利用仿真和历史匹配研究复杂的 HPV 动态变化

Andrew Iskauskas, Jamie A. Cohen, Danny Scarponi, Ian Vernon, Michael Goldstein, Daniel Klein, Richard G. White, Nicky McCreesh
{"title":"利用仿真和历史匹配研究复杂的 HPV 动态变化","authors":"Andrew Iskauskas, Jamie A. Cohen, Danny Scarponi, Ian Vernon, Michael Goldstein, Daniel Klein, Richard G. White, Nicky McCreesh","doi":"arxiv-2408.15805","DOIUrl":null,"url":null,"abstract":"The study of transmission and progression of human papillomavirus (HPV) is\ncrucial for understanding the incidence of cervical cancers, and has been\nidentified as a priority worldwide. The complexity of the disease necessitates\na detailed model of HPV transmission and its progression to cancer; to infer\nproperties of the above we require a careful process that can match to\nimperfect or incomplete observational data. In this paper, we describe the\nHPVsim simulator to satisfy the former requirement; to satisfy the latter we\ncouple this stochastic simulator to a process of emulation and history matching\nusing the R package hmer. With these tools, we are able to obtain a\ncomprehensive collection of parameter combinations that could give rise to\nobserved cancer data, and explore the implications of the variability of these\nparameter sets as it relates to future health interventions.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"184 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating Complex HPV Dynamics Using Emulation and History Matching\",\"authors\":\"Andrew Iskauskas, Jamie A. Cohen, Danny Scarponi, Ian Vernon, Michael Goldstein, Daniel Klein, Richard G. White, Nicky McCreesh\",\"doi\":\"arxiv-2408.15805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The study of transmission and progression of human papillomavirus (HPV) is\\ncrucial for understanding the incidence of cervical cancers, and has been\\nidentified as a priority worldwide. The complexity of the disease necessitates\\na detailed model of HPV transmission and its progression to cancer; to infer\\nproperties of the above we require a careful process that can match to\\nimperfect or incomplete observational data. In this paper, we describe the\\nHPVsim simulator to satisfy the former requirement; to satisfy the latter we\\ncouple this stochastic simulator to a process of emulation and history matching\\nusing the R package hmer. With these tools, we are able to obtain a\\ncomprehensive collection of parameter combinations that could give rise to\\nobserved cancer data, and explore the implications of the variability of these\\nparameter sets as it relates to future health interventions.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":\"184 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究人类乳头瘤病毒(HPV)的传播和发展对了解宫颈癌的发病率至关重要,已被确定为全球的优先事项。由于该疾病的复杂性,有必要建立一个详细的 HPV 传播及其向癌症发展的模型;要推断上述模型的特性,我们需要一个能与不完善或不完整的观察数据相匹配的谨慎过程。在本文中,我们描述了 HPVsim 模拟器,以满足前一项要求;为了满足后一项要求,我们将该随机模拟器与使用 R 软件包 hmer 的仿真和历史匹配过程结合起来。有了这些工具,我们就能全面收集可能导致癌症观测数据的参数组合,并探索这些参数集的可变性对未来健康干预的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating Complex HPV Dynamics Using Emulation and History Matching
The study of transmission and progression of human papillomavirus (HPV) is crucial for understanding the incidence of cervical cancers, and has been identified as a priority worldwide. The complexity of the disease necessitates a detailed model of HPV transmission and its progression to cancer; to infer properties of the above we require a careful process that can match to imperfect or incomplete observational data. In this paper, we describe the HPVsim simulator to satisfy the former requirement; to satisfy the latter we couple this stochastic simulator to a process of emulation and history matching using the R package hmer. With these tools, we are able to obtain a comprehensive collection of parameter combinations that could give rise to observed cancer data, and explore the implications of the variability of these parameter sets as it relates to future health interventions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1