金融收益数据测量误差建模

Ajay Jasra, Mohamed Maama, Aleksandar Mijatović
{"title":"金融收益数据测量误差建模","authors":"Ajay Jasra, Mohamed Maama, Aleksandar Mijatović","doi":"arxiv-2408.07405","DOIUrl":null,"url":null,"abstract":"In this paper we consider the modeling of measurement error for fund returns\ndata. In particular, given access to a time-series of discretely observed\nlog-returns and the associated maximum over the observation period, we develop\na stochastic model which models the true log-returns and maximum via a L\\'evy\nprocess and the data as a measurement error there-of. The main technical\ndifficulty of trying to infer this model, for instance Bayesian parameter\nestimation, is that the joint transition density of the return and maximum is\nseldom known, nor can it be simulated exactly. Based upon the novel stick\nbreaking representation of [12] we provide an approximation of the model. We\ndevelop a Markov chain Monte Carlo (MCMC) algorithm to sample from the Bayesian\nposterior of the approximated posterior and then extend this to a multilevel\nMCMC method which can reduce the computational cost to approximate posterior\nexpectations, relative to ordinary MCMC. We implement our methodology on\nseveral applications including for real data.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling of Measurement Error in Financial Returns Data\",\"authors\":\"Ajay Jasra, Mohamed Maama, Aleksandar Mijatović\",\"doi\":\"arxiv-2408.07405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we consider the modeling of measurement error for fund returns\\ndata. In particular, given access to a time-series of discretely observed\\nlog-returns and the associated maximum over the observation period, we develop\\na stochastic model which models the true log-returns and maximum via a L\\\\'evy\\nprocess and the data as a measurement error there-of. The main technical\\ndifficulty of trying to infer this model, for instance Bayesian parameter\\nestimation, is that the joint transition density of the return and maximum is\\nseldom known, nor can it be simulated exactly. Based upon the novel stick\\nbreaking representation of [12] we provide an approximation of the model. We\\ndevelop a Markov chain Monte Carlo (MCMC) algorithm to sample from the Bayesian\\nposterior of the approximated posterior and then extend this to a multilevel\\nMCMC method which can reduce the computational cost to approximate posterior\\nexpectations, relative to ordinary MCMC. We implement our methodology on\\nseveral applications including for real data.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.07405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.07405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了基金收益数据测量误差的建模问题。具体而言,在获得离散观测的对数收益率时间序列以及观测期内的相关最大值的情况下,我们建立了一个随机模型,该模型通过一个 L\'evy 过程对真实的对数收益率和最大值进行建模,并将数据作为其测量误差。试图推断这一模型(例如贝叶斯参数估计)的主要技术难点在于,收益率和最大值的联合过渡密度很少为人所知,也无法精确模拟。基于 [12] 的新颖破粘表示法,我们提供了模型的近似值。我们开发了一种马尔科夫链蒙特卡罗(MCMC)算法,从近似后验的贝叶斯后验中采样,然后将其扩展为一种多级 MCMC 方法,相对于普通 MCMC,这种方法可以降低近似后验的计算成本。我们在包括真实数据在内的多个应用中实施了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling of Measurement Error in Financial Returns Data
In this paper we consider the modeling of measurement error for fund returns data. In particular, given access to a time-series of discretely observed log-returns and the associated maximum over the observation period, we develop a stochastic model which models the true log-returns and maximum via a L\'evy process and the data as a measurement error there-of. The main technical difficulty of trying to infer this model, for instance Bayesian parameter estimation, is that the joint transition density of the return and maximum is seldom known, nor can it be simulated exactly. Based upon the novel stick breaking representation of [12] we provide an approximation of the model. We develop a Markov chain Monte Carlo (MCMC) algorithm to sample from the Bayesian posterior of the approximated posterior and then extend this to a multilevel MCMC method which can reduce the computational cost to approximate posterior expectations, relative to ordinary MCMC. We implement our methodology on several applications including for real data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1