鱼类轨迹推算的新视角:声学标记鱼类数据时空建模方法论

Mahshid Ahmadian, Edward L. Boone, Grace S. Chiu
{"title":"鱼类轨迹推算的新视角:声学标记鱼类数据时空建模方法论","authors":"Mahshid Ahmadian, Edward L. Boone, Grace S. Chiu","doi":"arxiv-2408.13220","DOIUrl":null,"url":null,"abstract":"The focus of this paper is a key component of a methodology for\nunderstanding, interpolating, and predicting fish movement patterns based on\nspatiotemporal data recorded by spatially static acoustic receivers. For\nperiods of time, fish may be far from the receivers, resulting in the absence\nof observations. The lack of information on the fish's location for extended\ntime periods poses challenges to the understanding of fish movement patterns,\nand hence, the identification of proper statistical inference frameworks for\nmodeling the trajectories. As the initial step in our methodology, in this\npaper, we implement an imputation strategy that relies on both Markov chain and\nBrownian motion principles to enhance our dataset over time. This methodology\nwill be generalizable and applicable to all fish species with similar migration\npatterns or data with similar structures due to the use of static acoustic\nreceivers.","PeriodicalId":501215,"journal":{"name":"arXiv - STAT - Computation","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Perspective to Fish Trajectory Imputation: A Methodology for Spatiotemporal Modeling of Acoustically Tagged Fish Data\",\"authors\":\"Mahshid Ahmadian, Edward L. Boone, Grace S. Chiu\",\"doi\":\"arxiv-2408.13220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The focus of this paper is a key component of a methodology for\\nunderstanding, interpolating, and predicting fish movement patterns based on\\nspatiotemporal data recorded by spatially static acoustic receivers. For\\nperiods of time, fish may be far from the receivers, resulting in the absence\\nof observations. The lack of information on the fish's location for extended\\ntime periods poses challenges to the understanding of fish movement patterns,\\nand hence, the identification of proper statistical inference frameworks for\\nmodeling the trajectories. As the initial step in our methodology, in this\\npaper, we implement an imputation strategy that relies on both Markov chain and\\nBrownian motion principles to enhance our dataset over time. This methodology\\nwill be generalizable and applicable to all fish species with similar migration\\npatterns or data with similar structures due to the use of static acoustic\\nreceivers.\",\"PeriodicalId\":501215,\"journal\":{\"name\":\"arXiv - STAT - Computation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文的重点是根据空间静态声学接收器记录的时空数据理解、内插和预测鱼类运动模式方法的关键组成部分。在一段时间内,鱼类可能会远离接收器,导致观测结果缺失。由于在较长时间内缺乏有关鱼类位置的信息,这对理解鱼类的运动模式以及确定适当的统计推断框架来模拟鱼类的运动轨迹提出了挑战。作为方法论的第一步,我们在本文中实施了一种估算策略,该策略依赖于马尔可夫链和布朗运动原理来增强我们的数据集。这种方法具有通用性,适用于所有具有类似洄游模式的鱼类物种,或由于使用静态声学接收器而具有类似结构的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Perspective to Fish Trajectory Imputation: A Methodology for Spatiotemporal Modeling of Acoustically Tagged Fish Data
The focus of this paper is a key component of a methodology for understanding, interpolating, and predicting fish movement patterns based on spatiotemporal data recorded by spatially static acoustic receivers. For periods of time, fish may be far from the receivers, resulting in the absence of observations. The lack of information on the fish's location for extended time periods poses challenges to the understanding of fish movement patterns, and hence, the identification of proper statistical inference frameworks for modeling the trajectories. As the initial step in our methodology, in this paper, we implement an imputation strategy that relies on both Markov chain and Brownian motion principles to enhance our dataset over time. This methodology will be generalizable and applicable to all fish species with similar migration patterns or data with similar structures due to the use of static acoustic receivers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Model-Embedded Gaussian Process Regression for Parameter Estimation in Dynamical System Effects of the entropy source on Monte Carlo simulations A Robust Approach to Gaussian Processes Implementation HJ-sampler: A Bayesian sampler for inverse problems of a stochastic process by leveraging Hamilton-Jacobi PDEs and score-based generative models Reducing Shape-Graph Complexity with Application to Classification of Retinal Blood Vessels and Neurons
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1