Yu-A. Kim, Jung-Soo Lee, Seung-Hee Kwon, Jin-Kook Kim
{"title":"考虑应力再分布效应的 CFT 蠕变试验方法和表层蠕变系数模型的建议","authors":"Yu-A. Kim, Jung-Soo Lee, Seung-Hee Kwon, Jin-Kook Kim","doi":"10.1186/s40069-024-00699-4","DOIUrl":null,"url":null,"abstract":"<p>Existing concrete creep coefficient prediction models have the limitation of not considering the structural characteristics of CFT. For this reason, these models tend to overestimate the creep deformation of CFT. Therefore, in order to overcome the limitations of existing CFT creep experiments, this study proposes a creep-experiment method involving the use of CFT that passively changes the load applied to a single concrete specimen by calculating the stress redistribution between the concrete and a steel tube in CFT based on a step-by-step method. Furthermore, by actually applying the proposed experimental method, a creep experiment of CFT lasting for approximately 163 days was performed and a superficial creep coefficient model of CFT was proposed based on long-term strain data from the experiment. In order to verify the proposed superficial creep coefficient model, it was compared with two design criteria (CEB-FIP and ACI) based on the experimental results of this study and references. As a result, compared to the existing design criteria, the value predicted by the proposed superficial creep coefficient model showed good agreement with the experimental results of this study and the references, proving that the proposed creep-experiment method of CFT and superficial creep coefficient model are reasonable.</p>","PeriodicalId":13832,"journal":{"name":"International Journal of Concrete Structures and Materials","volume":"11 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Proposal of a Creep-Experiment Method and Superficial Creep Coefficient Model of CFT Considering a Stress-Redistribution Effect\",\"authors\":\"Yu-A. Kim, Jung-Soo Lee, Seung-Hee Kwon, Jin-Kook Kim\",\"doi\":\"10.1186/s40069-024-00699-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Existing concrete creep coefficient prediction models have the limitation of not considering the structural characteristics of CFT. For this reason, these models tend to overestimate the creep deformation of CFT. Therefore, in order to overcome the limitations of existing CFT creep experiments, this study proposes a creep-experiment method involving the use of CFT that passively changes the load applied to a single concrete specimen by calculating the stress redistribution between the concrete and a steel tube in CFT based on a step-by-step method. Furthermore, by actually applying the proposed experimental method, a creep experiment of CFT lasting for approximately 163 days was performed and a superficial creep coefficient model of CFT was proposed based on long-term strain data from the experiment. In order to verify the proposed superficial creep coefficient model, it was compared with two design criteria (CEB-FIP and ACI) based on the experimental results of this study and references. As a result, compared to the existing design criteria, the value predicted by the proposed superficial creep coefficient model showed good agreement with the experimental results of this study and the references, proving that the proposed creep-experiment method of CFT and superficial creep coefficient model are reasonable.</p>\",\"PeriodicalId\":13832,\"journal\":{\"name\":\"International Journal of Concrete Structures and Materials\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Concrete Structures and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s40069-024-00699-4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Concrete Structures and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s40069-024-00699-4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Proposal of a Creep-Experiment Method and Superficial Creep Coefficient Model of CFT Considering a Stress-Redistribution Effect
Existing concrete creep coefficient prediction models have the limitation of not considering the structural characteristics of CFT. For this reason, these models tend to overestimate the creep deformation of CFT. Therefore, in order to overcome the limitations of existing CFT creep experiments, this study proposes a creep-experiment method involving the use of CFT that passively changes the load applied to a single concrete specimen by calculating the stress redistribution between the concrete and a steel tube in CFT based on a step-by-step method. Furthermore, by actually applying the proposed experimental method, a creep experiment of CFT lasting for approximately 163 days was performed and a superficial creep coefficient model of CFT was proposed based on long-term strain data from the experiment. In order to verify the proposed superficial creep coefficient model, it was compared with two design criteria (CEB-FIP and ACI) based on the experimental results of this study and references. As a result, compared to the existing design criteria, the value predicted by the proposed superficial creep coefficient model showed good agreement with the experimental results of this study and the references, proving that the proposed creep-experiment method of CFT and superficial creep coefficient model are reasonable.
期刊介绍:
The International Journal of Concrete Structures and Materials (IJCSM) provides a forum targeted for engineers and scientists around the globe to present and discuss various topics related to concrete, concrete structures and other applied materials incorporating cement cementitious binder, and polymer or fiber in conjunction with concrete. These forums give participants an opportunity to contribute their knowledge for the advancement of society. Topics include, but are not limited to, research results on
Properties and performance of concrete and concrete structures
Advanced and improved experimental techniques
Latest modelling methods
Possible improvement and enhancement of concrete properties
Structural and microstructural characterization
Concrete applications
Fiber reinforced concrete technology
Concrete waste management.