结合外部数据分析随机临床试验:迁移学习法

Yujia Gu, Hanzhong Liu, Wei Ma
{"title":"结合外部数据分析随机临床试验:迁移学习法","authors":"Yujia Gu, Hanzhong Liu, Wei Ma","doi":"arxiv-2409.04126","DOIUrl":null,"url":null,"abstract":"Randomized clinical trials are the gold standard for analyzing treatment\neffects, but high costs and ethical concerns can limit recruitment, potentially\nleading to invalid inferences. Incorporating external trial data with similar\ncharacteristics into the analysis using transfer learning appears promising for\naddressing these issues. In this paper, we present a formal framework for\napplying transfer learning to the analysis of clinical trials, considering\nthree key perspectives: transfer algorithm, theoretical foundation, and\ninference method. For the algorithm, we adopt a parameter-based transfer\nlearning approach to enhance the lasso-adjusted stratum-specific estimator\ndeveloped for estimating treatment effects. A key component in constructing the\ntransfer learning estimator is deriving the regression coefficient estimates\nwithin each stratum, accounting for the bias between source and target data. To\nprovide a theoretical foundation, we derive the $l_1$ convergence rate for the\nestimated regression coefficients and establish the asymptotic normality of the\ntransfer learning estimator. Our results show that when external trial data\nresembles current trial data, the sample size requirements can be reduced\ncompared to using only the current trial data. Finally, we propose a consistent\nnonparametric variance estimator to facilitate inference. Numerical studies\ndemonstrate the effectiveness and robustness of our proposed estimator across\nvarious scenarios.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"42 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporating external data for analyzing randomized clinical trials: A transfer learning approach\",\"authors\":\"Yujia Gu, Hanzhong Liu, Wei Ma\",\"doi\":\"arxiv-2409.04126\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Randomized clinical trials are the gold standard for analyzing treatment\\neffects, but high costs and ethical concerns can limit recruitment, potentially\\nleading to invalid inferences. Incorporating external trial data with similar\\ncharacteristics into the analysis using transfer learning appears promising for\\naddressing these issues. In this paper, we present a formal framework for\\napplying transfer learning to the analysis of clinical trials, considering\\nthree key perspectives: transfer algorithm, theoretical foundation, and\\ninference method. For the algorithm, we adopt a parameter-based transfer\\nlearning approach to enhance the lasso-adjusted stratum-specific estimator\\ndeveloped for estimating treatment effects. A key component in constructing the\\ntransfer learning estimator is deriving the regression coefficient estimates\\nwithin each stratum, accounting for the bias between source and target data. To\\nprovide a theoretical foundation, we derive the $l_1$ convergence rate for the\\nestimated regression coefficients and establish the asymptotic normality of the\\ntransfer learning estimator. Our results show that when external trial data\\nresembles current trial data, the sample size requirements can be reduced\\ncompared to using only the current trial data. Finally, we propose a consistent\\nnonparametric variance estimator to facilitate inference. Numerical studies\\ndemonstrate the effectiveness and robustness of our proposed estimator across\\nvarious scenarios.\",\"PeriodicalId\":501425,\"journal\":{\"name\":\"arXiv - STAT - Methodology\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - STAT - Methodology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04126\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随机临床试验是分析治疗效果的黄金标准,但高昂的成本和伦理问题会限制试验的招募,从而可能导致无效的推论。利用迁移学习将具有相似特征的外部试验数据纳入分析似乎有望解决这些问题。在本文中,我们提出了一个将迁移学习应用于临床试验分析的正式框架,其中考虑了三个关键视角:迁移算法、理论基础和推断方法。在算法方面,我们采用基于参数的迁移学习方法来增强为估计治疗效果而开发的套索调整分层估计法。构建转移学习估计器的一个关键部分是得出每个分层的回归系数估计值,并考虑源数据和目标数据之间的偏差。为了提供理论基础,我们推导出了回归系数估计值的 l_1$ 收敛率,并建立了转移学习估计器的渐近正态性。我们的结果表明,当外部试验数据与当前试验数据相结合时,与只使用当前试验数据相比,可以减少样本量要求。最后,我们提出了一种一致的非参数方差估计器,以方便推理。数值研究证明了我们提出的估计器在各种情况下的有效性和稳健性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Incorporating external data for analyzing randomized clinical trials: A transfer learning approach
Randomized clinical trials are the gold standard for analyzing treatment effects, but high costs and ethical concerns can limit recruitment, potentially leading to invalid inferences. Incorporating external trial data with similar characteristics into the analysis using transfer learning appears promising for addressing these issues. In this paper, we present a formal framework for applying transfer learning to the analysis of clinical trials, considering three key perspectives: transfer algorithm, theoretical foundation, and inference method. For the algorithm, we adopt a parameter-based transfer learning approach to enhance the lasso-adjusted stratum-specific estimator developed for estimating treatment effects. A key component in constructing the transfer learning estimator is deriving the regression coefficient estimates within each stratum, accounting for the bias between source and target data. To provide a theoretical foundation, we derive the $l_1$ convergence rate for the estimated regression coefficients and establish the asymptotic normality of the transfer learning estimator. Our results show that when external trial data resembles current trial data, the sample size requirements can be reduced compared to using only the current trial data. Finally, we propose a consistent nonparametric variance estimator to facilitate inference. Numerical studies demonstrate the effectiveness and robustness of our proposed estimator across various scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1