Spatial-SpinDrop: 利用自旋电子学实现基于空间剔除的二元贝叶斯神经网络

IF 2.1 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Nanotechnology Pub Date : 2024-09-06 DOI:10.1109/TNANO.2024.3445455
Soyed Tuhin Ahmed;Kamal Danouchi;Michael Hefenbrock;Guillaume Prenat;Lorena Anghel;Mehdi B. Tahoori
{"title":"Spatial-SpinDrop: 利用自旋电子学实现基于空间剔除的二元贝叶斯神经网络","authors":"Soyed Tuhin Ahmed;Kamal Danouchi;Michael Hefenbrock;Guillaume Prenat;Lorena Anghel;Mehdi B. Tahoori","doi":"10.1109/TNANO.2024.3445455","DOIUrl":null,"url":null,"abstract":"Recently, machine learning systems have gained prominence in real-time, critical decision-making domains, such as autonomous driving and industrial automation. Their implementations should avoid overconfident predictions through uncertainty estimation. Bayesian Neural Networks (BayNNs) are principled methods for estimating predictive uncertainty. However, their computational costs and power consumption hinder their widespread deployment in edge AI. Utilizing Dropout as an approximation of the posterior distribution, binarizing the parameters of BayNNs, and further implementing them in spintronics-based computation-in-memory (CiM) hardware arrays can be a viable solution. However, designing hardware Dropout modules for convolutional neural network (CNN) topologies is challenging and expensive, as they may require numerous Dropout modules and need to use spatial information to drop certain elements. In this paper, we introduce MC-SpatialDropout, a spatial dropout-based approximate BayNNs with spintronics emerging devices. Our method utilizes the inherent stochasticity of spintronics devices for efficient implementation of the spatial dropout module compared to existing implementations. Furthermore, the number of dropout modules per network layer is reduced by a factor of \n<inline-formula><tex-math>$9\\times$</tex-math></inline-formula>\n and energy consumption by a factor of \n<inline-formula><tex-math>$300\\times$</tex-math></inline-formula>\n, while still achieving comparable predictive performance and uncertainty estimates compared to related works.","PeriodicalId":449,"journal":{"name":"IEEE Transactions on Nanotechnology","volume":"23 ","pages":"636-643"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial-SpinDrop: Spatial Dropout-Based Binary Bayesian Neural Network With Spintronics Implementation\",\"authors\":\"Soyed Tuhin Ahmed;Kamal Danouchi;Michael Hefenbrock;Guillaume Prenat;Lorena Anghel;Mehdi B. Tahoori\",\"doi\":\"10.1109/TNANO.2024.3445455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, machine learning systems have gained prominence in real-time, critical decision-making domains, such as autonomous driving and industrial automation. Their implementations should avoid overconfident predictions through uncertainty estimation. Bayesian Neural Networks (BayNNs) are principled methods for estimating predictive uncertainty. However, their computational costs and power consumption hinder their widespread deployment in edge AI. Utilizing Dropout as an approximation of the posterior distribution, binarizing the parameters of BayNNs, and further implementing them in spintronics-based computation-in-memory (CiM) hardware arrays can be a viable solution. However, designing hardware Dropout modules for convolutional neural network (CNN) topologies is challenging and expensive, as they may require numerous Dropout modules and need to use spatial information to drop certain elements. In this paper, we introduce MC-SpatialDropout, a spatial dropout-based approximate BayNNs with spintronics emerging devices. Our method utilizes the inherent stochasticity of spintronics devices for efficient implementation of the spatial dropout module compared to existing implementations. Furthermore, the number of dropout modules per network layer is reduced by a factor of \\n<inline-formula><tex-math>$9\\\\times$</tex-math></inline-formula>\\n and energy consumption by a factor of \\n<inline-formula><tex-math>$300\\\\times$</tex-math></inline-formula>\\n, while still achieving comparable predictive performance and uncertainty estimates compared to related works.\",\"PeriodicalId\":449,\"journal\":{\"name\":\"IEEE Transactions on Nanotechnology\",\"volume\":\"23 \",\"pages\":\"636-643\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10668835/\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10668835/","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

最近,机器学习系统在自动驾驶和工业自动化等实时、关键决策领域大放异彩。这些系统的实现应通过不确定性估计避免过度自信的预测。贝叶斯神经网络(BayNNs)是估计预测不确定性的原则性方法。然而,其计算成本和功耗阻碍了它们在边缘人工智能领域的广泛应用。利用 Dropout 作为后验分布的近似值,对 BayNNs 的参数进行二值化,并进一步在基于自旋电子学的计算内存(CiM)硬件阵列中实现它们,不失为一种可行的解决方案。然而,为卷积神经网络(CNN)拓扑设计硬件Dropout模块具有挑战性且成本高昂,因为它们可能需要大量Dropout模块,并需要使用空间信息来丢弃某些元素。在本文中,我们介绍了 MC-SpatialDropout,这是一种基于空间剔除的近似 BayNNs,采用了自旋电子学新兴器件。与现有的实现方法相比,我们的方法利用了自旋电子器件固有的随机性,从而高效地实现了空间剔除模块。此外,与相关工作相比,每个网络层的剔除模块数量减少了 9 美元(times$),能耗减少了 300 美元(times$),同时仍然实现了可比的预测性能和不确定性估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial-SpinDrop: Spatial Dropout-Based Binary Bayesian Neural Network With Spintronics Implementation
Recently, machine learning systems have gained prominence in real-time, critical decision-making domains, such as autonomous driving and industrial automation. Their implementations should avoid overconfident predictions through uncertainty estimation. Bayesian Neural Networks (BayNNs) are principled methods for estimating predictive uncertainty. However, their computational costs and power consumption hinder their widespread deployment in edge AI. Utilizing Dropout as an approximation of the posterior distribution, binarizing the parameters of BayNNs, and further implementing them in spintronics-based computation-in-memory (CiM) hardware arrays can be a viable solution. However, designing hardware Dropout modules for convolutional neural network (CNN) topologies is challenging and expensive, as they may require numerous Dropout modules and need to use spatial information to drop certain elements. In this paper, we introduce MC-SpatialDropout, a spatial dropout-based approximate BayNNs with spintronics emerging devices. Our method utilizes the inherent stochasticity of spintronics devices for efficient implementation of the spatial dropout module compared to existing implementations. Furthermore, the number of dropout modules per network layer is reduced by a factor of $9\times$ and energy consumption by a factor of $300\times$ , while still achieving comparable predictive performance and uncertainty estimates compared to related works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Nanotechnology
IEEE Transactions on Nanotechnology 工程技术-材料科学:综合
CiteScore
4.80
自引率
8.30%
发文量
74
审稿时长
8.3 months
期刊介绍: The IEEE Transactions on Nanotechnology is devoted to the publication of manuscripts of archival value in the general area of nanotechnology, which is rapidly emerging as one of the fastest growing and most promising new technological developments for the next generation and beyond.
期刊最新文献
High-Speed and Area-Efficient Serial IMPLY-Based Approximate Subtractor and Comparator for Image Processing and Neural Networks Design of a Graphene Based Terahertz Perfect Metamaterial Absorber With Multiple Sensing Performance Impact of Electron and Hole Trap Profiles in BE-TOX on Retention Characteristics of 3D NAND Flash Memory Full 3-D Monte Carlo Simulation of Coupled Electron-Phonon Transport: Self-Heating in a Nanoscale FinFET Experimental Investigations and Characterization of Surfactant Activated Mixed Metal Oxide (MMO) Nanomaterial
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1