Yi Zhao, He Cui, Yidong Hu, Shunli Li, Feng Liu, Boxiong Shen, Kai Ge, Binyuan Liu, Yongfang Yang
{"title":"通过氨基调节水解策略实现大横向尺寸的二维分层多孔 MOF-Cu 及其卓越的二氧化碳光催化还原能力","authors":"Yi Zhao, He Cui, Yidong Hu, Shunli Li, Feng Liu, Boxiong Shen, Kai Ge, Binyuan Liu, Yongfang Yang","doi":"10.1016/j.apcatb.2024.124567","DOIUrl":null,"url":null,"abstract":"A two-dimensional hierarchically porous (2D HP) MOF-Cu layer with a large lateral size was prepared by the amino-groups regulated hydrolysis strategy. The resultant large 2D MOF-Cu layer has many defects owing to the replacement of partial ligands via -OH. 2D HP MOF-Cu large layer showed significantly enhanced photocatalytic activity under full-spectrum irradiation (with the CO production rate about 4.4 times that of the original 3D MOF-Cu sheets). DFT results confirmed that the defective 2D HP MOF-Cu large layer exhibited the new defective state in the valence band, which narrowed the band gap, broadened the light absorption range, promoted the electron transfer, and decreased the Gibbs free energy barrier for COOH* → CO* (about 0.61 eV). This work provides a facile method for the preparation of the defective 2D HP MOFs large layers via the regulation of amino groups from the organic ligands and elucidates the mechanism for improved photocatalytic efficiency.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A two dimensional hierarchically porous MOF-Cu with large lateral size via amino-groups regulated hydrolysis strategy and its superior photocatalytic reduction of CO2\",\"authors\":\"Yi Zhao, He Cui, Yidong Hu, Shunli Li, Feng Liu, Boxiong Shen, Kai Ge, Binyuan Liu, Yongfang Yang\",\"doi\":\"10.1016/j.apcatb.2024.124567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A two-dimensional hierarchically porous (2D HP) MOF-Cu layer with a large lateral size was prepared by the amino-groups regulated hydrolysis strategy. The resultant large 2D MOF-Cu layer has many defects owing to the replacement of partial ligands via -OH. 2D HP MOF-Cu large layer showed significantly enhanced photocatalytic activity under full-spectrum irradiation (with the CO production rate about 4.4 times that of the original 3D MOF-Cu sheets). DFT results confirmed that the defective 2D HP MOF-Cu large layer exhibited the new defective state in the valence band, which narrowed the band gap, broadened the light absorption range, promoted the electron transfer, and decreased the Gibbs free energy barrier for COOH* → CO* (about 0.61 eV). This work provides a facile method for the preparation of the defective 2D HP MOFs large layers via the regulation of amino groups from the organic ligands and elucidates the mechanism for improved photocatalytic efficiency.\",\"PeriodicalId\":516528,\"journal\":{\"name\":\"Applied Catalysis B: Environment and Energy\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environment and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apcatb.2024.124567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
通过氨基调节水解策略制备了横向尺寸较大的二维分层多孔(2D HP)MOF-Cu 层。由于部分配体被 -OH 取代,因此制备的二维大尺寸 MOF-Cu 层存在许多缺陷。二维 HP MOF-Cu 大层在全光谱辐照下显示出明显增强的光催化活性(CO 生成率约为原始三维 MOF-Cu 片的 4.4 倍)。DFT 结果证实,有缺陷的二维 HP MOF-Cu 大层在价带中表现出新的缺陷态,从而缩小了带隙,拓宽了光吸收范围,促进了电子转移,降低了 COOH* → CO* 的吉布斯自由能垒(约 0.61 eV)。这项工作提供了一种通过调节有机配体中的氨基来制备有缺陷的二维 HP MOFs 大层的简便方法,并阐明了提高光催化效率的机理。
A two dimensional hierarchically porous MOF-Cu with large lateral size via amino-groups regulated hydrolysis strategy and its superior photocatalytic reduction of CO2
A two-dimensional hierarchically porous (2D HP) MOF-Cu layer with a large lateral size was prepared by the amino-groups regulated hydrolysis strategy. The resultant large 2D MOF-Cu layer has many defects owing to the replacement of partial ligands via -OH. 2D HP MOF-Cu large layer showed significantly enhanced photocatalytic activity under full-spectrum irradiation (with the CO production rate about 4.4 times that of the original 3D MOF-Cu sheets). DFT results confirmed that the defective 2D HP MOF-Cu large layer exhibited the new defective state in the valence band, which narrowed the band gap, broadened the light absorption range, promoted the electron transfer, and decreased the Gibbs free energy barrier for COOH* → CO* (about 0.61 eV). This work provides a facile method for the preparation of the defective 2D HP MOFs large layers via the regulation of amino groups from the organic ligands and elucidates the mechanism for improved photocatalytic efficiency.