过渡金属基界面调节层中的低氧化态工程可加速电荷转移动力学,从而提高光电化学水分离效果

Li Xu, Meihua Li, Fangming Zhao, Jingjing Quan, Xingming Ning, Pei Chen, Zhongwei An, Xinbing Chen
{"title":"过渡金属基界面调节层中的低氧化态工程可加速电荷转移动力学,从而提高光电化学水分离效果","authors":"Li Xu, Meihua Li, Fangming Zhao, Jingjing Quan, Xingming Ning, Pei Chen, Zhongwei An, Xinbing Chen","doi":"10.1016/j.apcatb.2024.124503","DOIUrl":null,"url":null,"abstract":"The loading of transition metal oxyhydroxide (TMOH) on semiconductor (SC) is a promising strategy for fabricating desired photoelectrochemical (PEC) devices. Nevertheless, the inevitable charge recombination occurring at SC/TMOH interface severely hinders the carrier transfer. Herein, differing from the conventional multi-step hole capture process, a novel transition metal-based interfacial regulation layer with low oxidation state species is introduced for boosted charge separation. As expected, the optimized BiVO/Cu-CoO/FeNiOOH photoanode obtains a photocurrent density of 6.60 mA/cm at 1.23 V versus reversible hydrogen electrode (RHE) accompanied with outstanding photostability. ultraviolet/visible-spectroelectrochemistry, electrochemical analyses, and density functional theory (DFT) show that the Cu-CoO, like “charge transporter”, can directly modulate charge transfer pathway and quickly transfer hole from BiVO to FeNiOOH surface for PEC water splitting. Moreover, the approach can be extended to other Cu-NiO and Mn-CoO, proving its universality. This work provides an effective strategy to design efficient and stable photoanodes for water splitting.","PeriodicalId":516528,"journal":{"name":"Applied Catalysis B: Environment and Energy","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low oxidation state engineering in transition metal-based interfacial regulation layer accelerates charge transfer kinetics toward enhanced photoelectrochemical water splitting\",\"authors\":\"Li Xu, Meihua Li, Fangming Zhao, Jingjing Quan, Xingming Ning, Pei Chen, Zhongwei An, Xinbing Chen\",\"doi\":\"10.1016/j.apcatb.2024.124503\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The loading of transition metal oxyhydroxide (TMOH) on semiconductor (SC) is a promising strategy for fabricating desired photoelectrochemical (PEC) devices. Nevertheless, the inevitable charge recombination occurring at SC/TMOH interface severely hinders the carrier transfer. Herein, differing from the conventional multi-step hole capture process, a novel transition metal-based interfacial regulation layer with low oxidation state species is introduced for boosted charge separation. As expected, the optimized BiVO/Cu-CoO/FeNiOOH photoanode obtains a photocurrent density of 6.60 mA/cm at 1.23 V versus reversible hydrogen electrode (RHE) accompanied with outstanding photostability. ultraviolet/visible-spectroelectrochemistry, electrochemical analyses, and density functional theory (DFT) show that the Cu-CoO, like “charge transporter”, can directly modulate charge transfer pathway and quickly transfer hole from BiVO to FeNiOOH surface for PEC water splitting. Moreover, the approach can be extended to other Cu-NiO and Mn-CoO, proving its universality. This work provides an effective strategy to design efficient and stable photoanodes for water splitting.\",\"PeriodicalId\":516528,\"journal\":{\"name\":\"Applied Catalysis B: Environment and Energy\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Catalysis B: Environment and Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.apcatb.2024.124503\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Catalysis B: Environment and Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.apcatb.2024.124503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在半导体(SC)上负载过渡金属氧氢氧化物(TMOH)是制造理想光电化学(PEC)器件的一种可行策略。然而,SC/TMOH 界面不可避免的电荷重组严重阻碍了载流子的转移。有别于传统的多步空穴捕获过程,这里引入了一种基于过渡金属的新型界面调节层,其中含有低氧化态物种,以促进电荷分离。紫外/可见光谱电化学、电化学分析和密度泛函理论(DFT)表明,Cu-CoO 就像 "电荷传输器 "一样,可以直接调节电荷转移路径,将空穴从 BiVO 快速转移到 FeNiOOH 表面,从而实现 PEC 水分离。此外,该方法还可扩展到其他 Cu-NiO 和 Mn-CoO,证明了其通用性。这项工作为设计高效、稳定的光阳极进行水分离提供了有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Low oxidation state engineering in transition metal-based interfacial regulation layer accelerates charge transfer kinetics toward enhanced photoelectrochemical water splitting
The loading of transition metal oxyhydroxide (TMOH) on semiconductor (SC) is a promising strategy for fabricating desired photoelectrochemical (PEC) devices. Nevertheless, the inevitable charge recombination occurring at SC/TMOH interface severely hinders the carrier transfer. Herein, differing from the conventional multi-step hole capture process, a novel transition metal-based interfacial regulation layer with low oxidation state species is introduced for boosted charge separation. As expected, the optimized BiVO/Cu-CoO/FeNiOOH photoanode obtains a photocurrent density of 6.60 mA/cm at 1.23 V versus reversible hydrogen electrode (RHE) accompanied with outstanding photostability. ultraviolet/visible-spectroelectrochemistry, electrochemical analyses, and density functional theory (DFT) show that the Cu-CoO, like “charge transporter”, can directly modulate charge transfer pathway and quickly transfer hole from BiVO to FeNiOOH surface for PEC water splitting. Moreover, the approach can be extended to other Cu-NiO and Mn-CoO, proving its universality. This work provides an effective strategy to design efficient and stable photoanodes for water splitting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unusually improved peracetic acid activation for ultrafast organic compound removal through redox-inert Mg incorporation into active Co3O4 Photoelectrocatalytic allylic C–H oxidation to allylic alcohols coupled with hydrogen evolution Unveiling O2 adsorption on non-metallic active site for selective photocatalytic H2O2 production At least five: Benefit origins of potassium and sodium co-doping on carbon nitride for integrating pharmaceuticals degradation and hydrogen peroxide production Efficient and selective electroreduction of nitrate to ammonia via interfacial engineering of B-doped Cu nanoneedles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1