双功能化 SiO2 纳米粒子诱导氟硅异质橡胶的合作,使其具有可设计的耐低温性

IF 3.1 4区 工程技术 Q2 POLYMER SCIENCE Polymers for Advanced Technologies Pub Date : 2024-08-15 DOI:10.1002/pat.6544
Yucong Ma, Yu Fu, Lei Xing, Aimin Wu, Tianjiao Wang, Yi Xu, Fangjie Wan, Xufeng Dong, Hao Huang
{"title":"双功能化 SiO2 纳米粒子诱导氟硅异质橡胶的合作,使其具有可设计的耐低温性","authors":"Yucong Ma, Yu Fu, Lei Xing, Aimin Wu, Tianjiao Wang, Yi Xu, Fangjie Wan, Xufeng Dong, Hao Huang","doi":"10.1002/pat.6544","DOIUrl":null,"url":null,"abstract":"Fluorine‐silicone heterogeneous rubbers have been developed to address the issue of poor low‐temperature resistance in fluorine rubber. Bi‐functionalized SiO<jats:sub>2</jats:sub> nanoparticles have been prepared as a nano‐compatibilizer to enhance the cooperation of fluorine‐silicon heterogeneous rubbers and improve their compatibility. Research has demonstrated that the nano‐compatibilizer can reduce the interfacial energy between the two phases and facilitate void‐free dispersion of the phases. Fluorine‐silicone heterogeneous rubbers with varying ratios have been synthesized to achieve a broad low‐temperature range, from −34 to −58°C. Additionally, the use of the nano‐compatibilizer enhances the thermal stability and mechanical properties of the rubbers. This study presents a novel approach utilizing bi‐functionalized SiO<jats:sub>2</jats:sub> nanoparticles to promote the cooperation of fluorine‐silicone heterogeneous rubbers, resulting in customizable low‐temperature resistance for applications in sealing and hose materials.","PeriodicalId":20382,"journal":{"name":"Polymers for Advanced Technologies","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bi‐functionalized SiO2 nanoparticles induced cooperation of fluorine‐silicone heterogeneous rubbers with designable low‐temperature resistance\",\"authors\":\"Yucong Ma, Yu Fu, Lei Xing, Aimin Wu, Tianjiao Wang, Yi Xu, Fangjie Wan, Xufeng Dong, Hao Huang\",\"doi\":\"10.1002/pat.6544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fluorine‐silicone heterogeneous rubbers have been developed to address the issue of poor low‐temperature resistance in fluorine rubber. Bi‐functionalized SiO<jats:sub>2</jats:sub> nanoparticles have been prepared as a nano‐compatibilizer to enhance the cooperation of fluorine‐silicon heterogeneous rubbers and improve their compatibility. Research has demonstrated that the nano‐compatibilizer can reduce the interfacial energy between the two phases and facilitate void‐free dispersion of the phases. Fluorine‐silicone heterogeneous rubbers with varying ratios have been synthesized to achieve a broad low‐temperature range, from −34 to −58°C. Additionally, the use of the nano‐compatibilizer enhances the thermal stability and mechanical properties of the rubbers. This study presents a novel approach utilizing bi‐functionalized SiO<jats:sub>2</jats:sub> nanoparticles to promote the cooperation of fluorine‐silicone heterogeneous rubbers, resulting in customizable low‐temperature resistance for applications in sealing and hose materials.\",\"PeriodicalId\":20382,\"journal\":{\"name\":\"Polymers for Advanced Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymers for Advanced Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/pat.6544\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymers for Advanced Technologies","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pat.6544","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

为解决氟橡胶耐低温性能差的问题,开发了氟硅异质橡胶。研究人员制备了双官能化 SiO2 纳米粒子作为纳米共混剂,以增强氟硅异质橡胶的合作性并改善其相容性。研究表明,纳米共混剂可以降低两相之间的界面能,促进两相的无空隙分散。研究人员合成了不同比例的氟硅异质橡胶,实现了从 -34 到 -58°C 的广泛低温范围。此外,纳米共聚物的使用还增强了橡胶的热稳定性和机械性能。本研究提出了一种新方法,利用双官能化二氧化硅纳米粒子促进氟硅异质橡胶的合作,从而获得可定制的耐低温性能,应用于密封和软管材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bi‐functionalized SiO2 nanoparticles induced cooperation of fluorine‐silicone heterogeneous rubbers with designable low‐temperature resistance
Fluorine‐silicone heterogeneous rubbers have been developed to address the issue of poor low‐temperature resistance in fluorine rubber. Bi‐functionalized SiO2 nanoparticles have been prepared as a nano‐compatibilizer to enhance the cooperation of fluorine‐silicon heterogeneous rubbers and improve their compatibility. Research has demonstrated that the nano‐compatibilizer can reduce the interfacial energy between the two phases and facilitate void‐free dispersion of the phases. Fluorine‐silicone heterogeneous rubbers with varying ratios have been synthesized to achieve a broad low‐temperature range, from −34 to −58°C. Additionally, the use of the nano‐compatibilizer enhances the thermal stability and mechanical properties of the rubbers. This study presents a novel approach utilizing bi‐functionalized SiO2 nanoparticles to promote the cooperation of fluorine‐silicone heterogeneous rubbers, resulting in customizable low‐temperature resistance for applications in sealing and hose materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Polymers for Advanced Technologies
Polymers for Advanced Technologies 工程技术-高分子科学
CiteScore
6.20
自引率
5.90%
发文量
337
审稿时长
2.1 months
期刊介绍: Polymers for Advanced Technologies is published in response to recent significant changes in the patterns of materials research and development. Worldwide attention has been focused on the critical importance of materials in the creation of new devices and systems. It is now recognized that materials are often the limiting factor in bringing a new technical concept to fruition and that polymers are often the materials of choice in these demanding applications. A significant portion of the polymer research ongoing in the world is directly or indirectly related to the solution of complex, interdisciplinary problems whose successful resolution is necessary for achievement of broad system objectives. Polymers for Advanced Technologies is focused to the interest of scientists and engineers from academia and industry who are participating in these new areas of polymer research and development. It is the intent of this journal to impact the polymer related advanced technologies to meet the challenge of the twenty-first century. Polymers for Advanced Technologies aims at encouraging innovation, invention, imagination and creativity by providing a broad interdisciplinary platform for the presentation of new research and development concepts, theories and results which reflect the changing image and pace of modern polymer science and technology. Polymers for Advanced Technologies aims at becoming the central organ of the new multi-disciplinary polymer oriented materials science of the highest scientific standards. It will publish original research papers on finished studies; communications limited to five typewritten pages plus three illustrations, containing experimental details; review articles of up to 40 pages; letters to the editor and book reviews. Review articles will normally be published by invitation. The Editor-in-Chief welcomes suggestions for reviews.
期刊最新文献
Age resistant low density peroxide cured EPDM rubber insulation for large rocket motors Preparation, mechanical analysis and investigation of swelling behavior of boron nitride reinforced hydrogel polymer composite films Multiobjective optimization of resin transfer molding curing process for silicon‐containing arylacetylene resin‐matrix composites Promotion on the thermal and mechanical behaviors of epoxy resin using phthalonitrile and functionalized‐SiO2 Sound absorption properties and mechanism of multi‐layer micro‐perforated nanofiber membrane
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1