{"title":"具有双噁唑啉框架的手性 L2/Z 型配体的合成及其在钯催化不对称烯丙基烷基化中的应用","authors":"Hikaru Takahashi, Takashi Shibata, Daisuke Naito, Ryo Murakami, Fuyuhiko Inagaki","doi":"10.1055/a-2377-0844","DOIUrl":null,"url":null,"abstract":"<p>Chiral L<sub>2</sub>/Z*-type ligands featuring a bisoxazoline framework have been successfully synthesized and applied in asymmetric allylic alkylation. These ligands, designed based on an oxazoline skeleton and derived from chiral amino acid derivatives, incorporate antimony and bismuth as Z-type ligands. Ligands with bulky, electron-withdrawing groups on antimony and bismuth showed enhanced catalytic performance. This research highlights the potential of these novel chiral L<sub>2</sub>/Z*-type ligands to improve asymmetric catalysis.</p> ","PeriodicalId":22319,"journal":{"name":"Synlett","volume":"3 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of Chiral L2/Z-Type Ligands Featuring a Bisoxazoline Framework and Their Application to Palladium-Catalyzed Asymmetric Allylic Alkylation\",\"authors\":\"Hikaru Takahashi, Takashi Shibata, Daisuke Naito, Ryo Murakami, Fuyuhiko Inagaki\",\"doi\":\"10.1055/a-2377-0844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Chiral L<sub>2</sub>/Z*-type ligands featuring a bisoxazoline framework have been successfully synthesized and applied in asymmetric allylic alkylation. These ligands, designed based on an oxazoline skeleton and derived from chiral amino acid derivatives, incorporate antimony and bismuth as Z-type ligands. Ligands with bulky, electron-withdrawing groups on antimony and bismuth showed enhanced catalytic performance. This research highlights the potential of these novel chiral L<sub>2</sub>/Z*-type ligands to improve asymmetric catalysis.</p> \",\"PeriodicalId\":22319,\"journal\":{\"name\":\"Synlett\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synlett\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1055/a-2377-0844\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synlett","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1055/a-2377-0844","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0
摘要
以双噁唑啉骨架为特征的手性 L2/Z* 型配体已被成功合成并应用于不对称烯丙基烷基化反应。这些配体以噁唑啉骨架为基础设计,源自手性氨基酸衍生物,并加入了锑和铋作为 Z 型配体。在锑和铋上带有笨重的抽电子基团的配体显示出更强的催化性能。这项研究凸显了这些新型手性 L2/Z* 型配体在改善不对称催化方面的潜力。
Synthesis of Chiral L2/Z-Type Ligands Featuring a Bisoxazoline Framework and Their Application to Palladium-Catalyzed Asymmetric Allylic Alkylation
Chiral L2/Z*-type ligands featuring a bisoxazoline framework have been successfully synthesized and applied in asymmetric allylic alkylation. These ligands, designed based on an oxazoline skeleton and derived from chiral amino acid derivatives, incorporate antimony and bismuth as Z-type ligands. Ligands with bulky, electron-withdrawing groups on antimony and bismuth showed enhanced catalytic performance. This research highlights the potential of these novel chiral L2/Z*-type ligands to improve asymmetric catalysis.
期刊介绍:
SYNLETT is an international journal reporting research results and current trends in chemical synthesis in short personalized reviews and preliminary communications. It covers all fields of scientific endeavor that involve organic synthesis, including catalysis, organometallic, medicinal, biological, and photochemistry, but also related disciplines and offers the possibility to publish scientific primary data.