对空气分级大麦蛋白进行高水分挤压质化以生产新型植物肉类类似物

IF 5.3 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Food and Bioprocess Technology Pub Date : 2024-08-26 DOI:10.1007/s11947-024-03549-z
Amanjeet Singh, Mehmet C. Tulbek, Marta Izydorczyk, Filiz Koksel
{"title":"对空气分级大麦蛋白进行高水分挤压质化以生产新型植物肉类类似物","authors":"Amanjeet Singh, Mehmet C. Tulbek, Marta Izydorczyk, Filiz Koksel","doi":"10.1007/s11947-024-03549-z","DOIUrl":null,"url":null,"abstract":"<p>Barley, primarily used for malting and animal feed, holds untapped potential as a human food source. Plant-based meat analogues, aimed at mimicking attributes of animal meats, typically rely on refined ingredients like soy protein or wheat gluten. To address ingredient sustainability and diversification in the plant-based food sector, this study used protein-enriched ingredients from two dry-fractionated barley varieties. Blends of pea protein and protein-enriched barley flour from two varieties (CDC Austenson and CDC Valdres) were extruded under high moisture conditions. The effects of two barley inclusion levels (15 and 30% w/w) and three feed moisture levels (47.5, 52.5, and 57.5% wb) were investigated on meat analogue’s physical and techno-functional properties. Barley’s inclusion led to texturized meat analogues with sufficiently fibrous characteristics and texture comparable with recent studies on meat analogues. Meat analogues containing 15% of protein-enriched barley flour from CDC Austenson and processed at 57.5% feed moisture had the highest anisotropy index (1.57). An increase in barley inclusion in the formulation led to an increase in the hardness, gumminess, and chewiness of the meat analogues. However, increasing moisture content led to a decrease in hardness, gumminess, chewiness, density, and color change. In terms of techno-functionality, extrusion led to a reduction in the water and oil holding capacities of the meat analogues compared to the raw formulations. In conclusion, the study demonstrated the effective inclusion of protein-enriched barley flours as ingredients for high moisture meat analogues. Findings are expected to encourage the usage of barley in human food applications and promote ingredient diversification.\n</p>","PeriodicalId":562,"journal":{"name":"Food and Bioprocess Technology","volume":"320 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High Moisture Extrusion Texturization of Air-Classified Barley Protein for the Production of Novel Plant-Based Meat Analogues\",\"authors\":\"Amanjeet Singh, Mehmet C. Tulbek, Marta Izydorczyk, Filiz Koksel\",\"doi\":\"10.1007/s11947-024-03549-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Barley, primarily used for malting and animal feed, holds untapped potential as a human food source. Plant-based meat analogues, aimed at mimicking attributes of animal meats, typically rely on refined ingredients like soy protein or wheat gluten. To address ingredient sustainability and diversification in the plant-based food sector, this study used protein-enriched ingredients from two dry-fractionated barley varieties. Blends of pea protein and protein-enriched barley flour from two varieties (CDC Austenson and CDC Valdres) were extruded under high moisture conditions. The effects of two barley inclusion levels (15 and 30% w/w) and three feed moisture levels (47.5, 52.5, and 57.5% wb) were investigated on meat analogue’s physical and techno-functional properties. Barley’s inclusion led to texturized meat analogues with sufficiently fibrous characteristics and texture comparable with recent studies on meat analogues. Meat analogues containing 15% of protein-enriched barley flour from CDC Austenson and processed at 57.5% feed moisture had the highest anisotropy index (1.57). An increase in barley inclusion in the formulation led to an increase in the hardness, gumminess, and chewiness of the meat analogues. However, increasing moisture content led to a decrease in hardness, gumminess, chewiness, density, and color change. In terms of techno-functionality, extrusion led to a reduction in the water and oil holding capacities of the meat analogues compared to the raw formulations. In conclusion, the study demonstrated the effective inclusion of protein-enriched barley flours as ingredients for high moisture meat analogues. Findings are expected to encourage the usage of barley in human food applications and promote ingredient diversification.\\n</p>\",\"PeriodicalId\":562,\"journal\":{\"name\":\"Food and Bioprocess Technology\",\"volume\":\"320 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Bioprocess Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11947-024-03549-z\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioprocess Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11947-024-03549-z","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大麦主要用于发芽和动物饲料,但其作为人类食物来源的潜力尚未开发。旨在模仿动物肉类属性的植物肉类类似物通常依赖于大豆蛋白或小麦麸质等精制配料。为了解决植物性食品行业配料的可持续性和多样化问题,本研究使用了来自两种干馏分大麦品种的富含蛋白质的配料。在高水分条件下挤压两种品种(CDC Austenson 和 CDC Valdres)的豌豆蛋白和富含蛋白质的大麦面粉混合物。研究了两种大麦添加水平(15% 和 30% w/w)和三种饲料水分水平(47.5%、52.5% 和 57.5% wb)对肉类类似物的物理和技术功能特性的影响。加入大麦后,质构化的肉模拟物具有足够的纤维特性和质构,可与最近对肉模拟物的研究相媲美。含有 15%来自 CDC Austenson 的富含蛋白质的大麦面粉并在 57.5% 饲料水分条件下加工的肉类类似物具有最高的各向异性指数(1.57)。配方中大麦含量的增加会导致肉类类似物的硬度、胶质感和咀嚼感增加。然而,水分含量的增加会导致硬度、胶质感、咀嚼感、密度和颜色的变化。在技术功能方面,与原料配方相比,挤压导致肉类类似物的持水量和持油量降低。总之,这项研究表明,富含蛋白质的大麦面粉可以有效地用作高水分肉类类似物的配料。研究结果有望鼓励在人类食品中使用大麦,并促进配料的多样化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
High Moisture Extrusion Texturization of Air-Classified Barley Protein for the Production of Novel Plant-Based Meat Analogues

Barley, primarily used for malting and animal feed, holds untapped potential as a human food source. Plant-based meat analogues, aimed at mimicking attributes of animal meats, typically rely on refined ingredients like soy protein or wheat gluten. To address ingredient sustainability and diversification in the plant-based food sector, this study used protein-enriched ingredients from two dry-fractionated barley varieties. Blends of pea protein and protein-enriched barley flour from two varieties (CDC Austenson and CDC Valdres) were extruded under high moisture conditions. The effects of two barley inclusion levels (15 and 30% w/w) and three feed moisture levels (47.5, 52.5, and 57.5% wb) were investigated on meat analogue’s physical and techno-functional properties. Barley’s inclusion led to texturized meat analogues with sufficiently fibrous characteristics and texture comparable with recent studies on meat analogues. Meat analogues containing 15% of protein-enriched barley flour from CDC Austenson and processed at 57.5% feed moisture had the highest anisotropy index (1.57). An increase in barley inclusion in the formulation led to an increase in the hardness, gumminess, and chewiness of the meat analogues. However, increasing moisture content led to a decrease in hardness, gumminess, chewiness, density, and color change. In terms of techno-functionality, extrusion led to a reduction in the water and oil holding capacities of the meat analogues compared to the raw formulations. In conclusion, the study demonstrated the effective inclusion of protein-enriched barley flours as ingredients for high moisture meat analogues. Findings are expected to encourage the usage of barley in human food applications and promote ingredient diversification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Food and Bioprocess Technology
Food and Bioprocess Technology 农林科学-食品科技
CiteScore
9.50
自引率
19.60%
发文量
200
审稿时长
2.8 months
期刊介绍: Food and Bioprocess Technology provides an effective and timely platform for cutting-edge high quality original papers in the engineering and science of all types of food processing technologies, from the original food supply source to the consumer’s dinner table. It aims to be a leading international journal for the multidisciplinary agri-food research community. The journal focuses especially on experimental or theoretical research findings that have the potential for helping the agri-food industry to improve process efficiency, enhance product quality and, extend shelf-life of fresh and processed agri-food products. The editors present critical reviews on new perspectives to established processes, innovative and emerging technologies, and trends and future research in food and bioproducts processing. The journal also publishes short communications for rapidly disseminating preliminary results, letters to the Editor on recent developments and controversy, and book reviews.
期刊最新文献
Production and Preliminary Characterization of Microbial Cellulose Generated in Fermented Moringa and Coated with Flaxseed Mucilage Pomegranate Peel Flour as a Co-encapsulant Improves the Survival of Lactic Acid Bacteria to Thermal Treatment and Simulated Gastrointestinal Conditions A Novel Approach for Solubility and Bioavailability Enhancement of Canthaxanthin Obtained from Dietzia natronolimnaea HS-1 by Canthaxanthin-V-Amylose Complex Storage Stability and Anthocyanin Degradation Kinetics of Alginate/Carboxymethyl Cellulose–based Emulsion Fortified with Red Onion Peel Extracts and its Application in the Preservation of Fresh Strawberries Investigating the Impact of Hydrophobic Deep Eutectic Oil-in-Water Nanoemulsion on Cell Membrane Degradation and Inhibition of C. gloeosporioides in Postharvest Technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1