Javier Chao-Pellicer, Samuel Delgado-Hernández, Iñigo Arberas-Jiménez, Ines Sifaoui, David Tejedor*, Fernando García-Tellado, José E. Piñero* and Jacob Lorenzo-Morales*,
{"title":"氰基丙烯酰胺和 5-氨基吡咯-2-酮的合成及其对奈格勒氏菌的生物学评价","authors":"Javier Chao-Pellicer, Samuel Delgado-Hernández, Iñigo Arberas-Jiménez, Ines Sifaoui, David Tejedor*, Fernando García-Tellado, José E. Piñero* and Jacob Lorenzo-Morales*, ","doi":"10.1021/acsinfecdis.4c0043910.1021/acsinfecdis.4c00439","DOIUrl":null,"url":null,"abstract":"<p >Primary amoebic meningoencephalitis is caused by the free-living amoeba <i>Naegleria fowleri</i>. The lack of standardized treatment has significantly contributed to the high fatality rates observed in reported cases. Therefore, this study aims to explore the anti-<i>Naegleria</i> activity of eight synthesized cyanoacrylamides and 5-iminopyrrol-2-ones. Notably, QOET-109, QOET-111, QOET-112, and QOET-114 exhibited a higher selectivity index against <i>Naegleria</i> compared to those of the rest of the compounds. Subsequently, these chemicals were assessed against the resistant stage of <i>N. fowleri</i>, demonstrating activity similar to that observed in the vegetative stage. Moreover, characteristic events of programmed cell death were evidenced, including chromatin condensation, increased plasma membrane permeability, mitochondrial damage, and heightened oxidative stress, among others. Finally, this research demonstrated the <i>in vitro</i> activity of the cyanoacrylamide and 5-iminopyrrol-2-one molecules, as well as the induction of metabolic event characteristics of regulated cell death in <i>Naegleria fowleri</i>.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis and Biological Evaluation of Cyanoacrylamides and 5-Iminopyrrol-2-Ones Against Naegleria fowleri\",\"authors\":\"Javier Chao-Pellicer, Samuel Delgado-Hernández, Iñigo Arberas-Jiménez, Ines Sifaoui, David Tejedor*, Fernando García-Tellado, José E. Piñero* and Jacob Lorenzo-Morales*, \",\"doi\":\"10.1021/acsinfecdis.4c0043910.1021/acsinfecdis.4c00439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Primary amoebic meningoencephalitis is caused by the free-living amoeba <i>Naegleria fowleri</i>. The lack of standardized treatment has significantly contributed to the high fatality rates observed in reported cases. Therefore, this study aims to explore the anti-<i>Naegleria</i> activity of eight synthesized cyanoacrylamides and 5-iminopyrrol-2-ones. Notably, QOET-109, QOET-111, QOET-112, and QOET-114 exhibited a higher selectivity index against <i>Naegleria</i> compared to those of the rest of the compounds. Subsequently, these chemicals were assessed against the resistant stage of <i>N. fowleri</i>, demonstrating activity similar to that observed in the vegetative stage. Moreover, characteristic events of programmed cell death were evidenced, including chromatin condensation, increased plasma membrane permeability, mitochondrial damage, and heightened oxidative stress, among others. Finally, this research demonstrated the <i>in vitro</i> activity of the cyanoacrylamide and 5-iminopyrrol-2-one molecules, as well as the induction of metabolic event characteristics of regulated cell death in <i>Naegleria fowleri</i>.</p>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsinfecdis.4c00439\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsinfecdis.4c00439","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Synthesis and Biological Evaluation of Cyanoacrylamides and 5-Iminopyrrol-2-Ones Against Naegleria fowleri
Primary amoebic meningoencephalitis is caused by the free-living amoeba Naegleria fowleri. The lack of standardized treatment has significantly contributed to the high fatality rates observed in reported cases. Therefore, this study aims to explore the anti-Naegleria activity of eight synthesized cyanoacrylamides and 5-iminopyrrol-2-ones. Notably, QOET-109, QOET-111, QOET-112, and QOET-114 exhibited a higher selectivity index against Naegleria compared to those of the rest of the compounds. Subsequently, these chemicals were assessed against the resistant stage of N. fowleri, demonstrating activity similar to that observed in the vegetative stage. Moreover, characteristic events of programmed cell death were evidenced, including chromatin condensation, increased plasma membrane permeability, mitochondrial damage, and heightened oxidative stress, among others. Finally, this research demonstrated the in vitro activity of the cyanoacrylamide and 5-iminopyrrol-2-one molecules, as well as the induction of metabolic event characteristics of regulated cell death in Naegleria fowleri.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.