Pauline Gluski , Juan Pablo Ramos-Bonilla , Jasmine R. Petriglieri , Francesco Turci , Margarita Giraldo , Maurizio Tommasini , Gabriele Poli , Benjamin Lysaniuk
{"title":"石棉水泥屋顶的远程检测:在中低收入国家评估 QGIS 插件","authors":"Pauline Gluski , Juan Pablo Ramos-Bonilla , Jasmine R. Petriglieri , Francesco Turci , Margarita Giraldo , Maurizio Tommasini , Gabriele Poli , Benjamin Lysaniuk","doi":"10.1016/j.rsase.2024.101351","DOIUrl":null,"url":null,"abstract":"<div><p>Machine learning, a subset of artificial intelligence, has emerged as a powerful tool for generating new knowledge from observations. In the realm of geographic information systems (GIS), machine learning techniques have become essential for spatial analysis tasks. Satellite image classification methods offer valuable decision-making support, particularly in land-use planning and identifying asbestos cement roofs, which pose significant health risks. In Colombia, where asbestos has been used for decades, the detection and management of installed asbestos is critical. This study evaluates the effectiveness of the RoofClassify plugin, a machine learning-based GIS tool, in detecting asbestos cement roofs in Sibaté, Colombia. By employing high-resolution satellite imagery, the study assesses the plugin's accuracy and performance. Results indicate that RoofClassify demonstrates promising capabilities in detecting asbestos cement roofs, achieving an overall accuracy score of 69.73%. This shows potential for identifying areas with the presence of asbestos and informing decision-makers. However, false positives remain a challenge, necessitating further on-site verification. The study underscores the importance of cautious interpretation of classification results and the need for tailored approaches to address specific contextual factors. Overall, RoofClassify presents a valuable tool for identifying asbestos cement roofs, aiding in asbestos management strategies.</p></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"36 ","pages":"Article 101351"},"PeriodicalIF":3.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352938524002155/pdfft?md5=e723f187bed4e613bcc15d901081c39b&pid=1-s2.0-S2352938524002155-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Remote detection of asbestos-cement roofs: Evaluating a QGIS plugin in a low- and middle-income country\",\"authors\":\"Pauline Gluski , Juan Pablo Ramos-Bonilla , Jasmine R. Petriglieri , Francesco Turci , Margarita Giraldo , Maurizio Tommasini , Gabriele Poli , Benjamin Lysaniuk\",\"doi\":\"10.1016/j.rsase.2024.101351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Machine learning, a subset of artificial intelligence, has emerged as a powerful tool for generating new knowledge from observations. In the realm of geographic information systems (GIS), machine learning techniques have become essential for spatial analysis tasks. Satellite image classification methods offer valuable decision-making support, particularly in land-use planning and identifying asbestos cement roofs, which pose significant health risks. In Colombia, where asbestos has been used for decades, the detection and management of installed asbestos is critical. This study evaluates the effectiveness of the RoofClassify plugin, a machine learning-based GIS tool, in detecting asbestos cement roofs in Sibaté, Colombia. By employing high-resolution satellite imagery, the study assesses the plugin's accuracy and performance. Results indicate that RoofClassify demonstrates promising capabilities in detecting asbestos cement roofs, achieving an overall accuracy score of 69.73%. This shows potential for identifying areas with the presence of asbestos and informing decision-makers. However, false positives remain a challenge, necessitating further on-site verification. The study underscores the importance of cautious interpretation of classification results and the need for tailored approaches to address specific contextual factors. Overall, RoofClassify presents a valuable tool for identifying asbestos cement roofs, aiding in asbestos management strategies.</p></div>\",\"PeriodicalId\":53227,\"journal\":{\"name\":\"Remote Sensing Applications-Society and Environment\",\"volume\":\"36 \",\"pages\":\"Article 101351\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352938524002155/pdfft?md5=e723f187bed4e613bcc15d901081c39b&pid=1-s2.0-S2352938524002155-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Remote Sensing Applications-Society and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352938524002155\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938524002155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Remote detection of asbestos-cement roofs: Evaluating a QGIS plugin in a low- and middle-income country
Machine learning, a subset of artificial intelligence, has emerged as a powerful tool for generating new knowledge from observations. In the realm of geographic information systems (GIS), machine learning techniques have become essential for spatial analysis tasks. Satellite image classification methods offer valuable decision-making support, particularly in land-use planning and identifying asbestos cement roofs, which pose significant health risks. In Colombia, where asbestos has been used for decades, the detection and management of installed asbestos is critical. This study evaluates the effectiveness of the RoofClassify plugin, a machine learning-based GIS tool, in detecting asbestos cement roofs in Sibaté, Colombia. By employing high-resolution satellite imagery, the study assesses the plugin's accuracy and performance. Results indicate that RoofClassify demonstrates promising capabilities in detecting asbestos cement roofs, achieving an overall accuracy score of 69.73%. This shows potential for identifying areas with the presence of asbestos and informing decision-makers. However, false positives remain a challenge, necessitating further on-site verification. The study underscores the importance of cautious interpretation of classification results and the need for tailored approaches to address specific contextual factors. Overall, RoofClassify presents a valuable tool for identifying asbestos cement roofs, aiding in asbestos management strategies.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems