平行板夹多孔通道中非混溶微流体和牛顿流体的流动和传热

IF 4.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Chinese Journal of Physics Pub Date : 2024-09-02 DOI:10.1016/j.cjph.2024.08.041
Alpana Srivastava , Ajit Kumar , Akhilesh Chandra Pandey
{"title":"平行板夹多孔通道中非混溶微流体和牛顿流体的流动和传热","authors":"Alpana Srivastava ,&nbsp;Ajit Kumar ,&nbsp;Akhilesh Chandra Pandey","doi":"10.1016/j.cjph.2024.08.041","DOIUrl":null,"url":null,"abstract":"<div><p>An analytical approach has been considered to inspect the flow and heat transfer of immiscible Newtonian and micropolar fluid in a porous medium. This study aims to elucidate the Darcy effect on the model in which isotropic porous regions with different permeability are used. The model of the current problem explains that the flow region is divided into two regions: Newtonian fluid flows in the upper layer, and micropolar fluid flows in the lower layer. Different constant temperatures imposed at boundary walls, heat transfer does not affect the pressure gradient. The governing equations are solved analytically by applying a linear differential equation (LDE). The effect of associated physical parameters such as material parameter, Darcy number, Eckert number, Prandtl number, and viscosity ratio on velocity, micro-rotation, heat transfer, flow rate, heat transfer rate, wall shear stress, and Nusselt number have been inspected. The most significant finding of this research work is that increasing the Darcy number signifies enhanced permeability, resulting in a higher flow rate. The heat transfer rate at the top occurs maximum when the material parameter’s range is minimum while raising the viscosity ratio leads to an increasing heat transfer rate at the bottom. Enhancement in material parameter influences Nusselt number and decreases in nature. The findings of our study are verified with the previously established results. The present work has a setup that is useful in petroleum extraction, transport problems in reservoir rock of an oil field, improving nutrient transport and thermal regulation in tissue engineering, and designing more efficient drug delivery systems and biomedical devices.</p></div>","PeriodicalId":10340,"journal":{"name":"Chinese Journal of Physics","volume":"92 ","pages":"Pages 33-50"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flow and heat transfer of non-miscible micropolar and Newtonian fluid in porous channel sandwiched between parallel plates\",\"authors\":\"Alpana Srivastava ,&nbsp;Ajit Kumar ,&nbsp;Akhilesh Chandra Pandey\",\"doi\":\"10.1016/j.cjph.2024.08.041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An analytical approach has been considered to inspect the flow and heat transfer of immiscible Newtonian and micropolar fluid in a porous medium. This study aims to elucidate the Darcy effect on the model in which isotropic porous regions with different permeability are used. The model of the current problem explains that the flow region is divided into two regions: Newtonian fluid flows in the upper layer, and micropolar fluid flows in the lower layer. Different constant temperatures imposed at boundary walls, heat transfer does not affect the pressure gradient. The governing equations are solved analytically by applying a linear differential equation (LDE). The effect of associated physical parameters such as material parameter, Darcy number, Eckert number, Prandtl number, and viscosity ratio on velocity, micro-rotation, heat transfer, flow rate, heat transfer rate, wall shear stress, and Nusselt number have been inspected. The most significant finding of this research work is that increasing the Darcy number signifies enhanced permeability, resulting in a higher flow rate. The heat transfer rate at the top occurs maximum when the material parameter’s range is minimum while raising the viscosity ratio leads to an increasing heat transfer rate at the bottom. Enhancement in material parameter influences Nusselt number and decreases in nature. The findings of our study are verified with the previously established results. The present work has a setup that is useful in petroleum extraction, transport problems in reservoir rock of an oil field, improving nutrient transport and thermal regulation in tissue engineering, and designing more efficient drug delivery systems and biomedical devices.</p></div>\",\"PeriodicalId\":10340,\"journal\":{\"name\":\"Chinese Journal of Physics\",\"volume\":\"92 \",\"pages\":\"Pages 33-50\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0577907324003435\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0577907324003435","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究考虑采用一种分析方法来检测多孔介质中不相溶牛顿流体和微珀尔流体的流动和传热。本研究旨在阐明达西效应对模型的影响,其中使用了具有不同渗透性的各向同性多孔区域。当前问题的模型说明,流动区域分为两个区域:牛顿流体在上层流动,微极性流体在下层流动。在边界壁上施加不同的恒定温度,热量传递不会影响压力梯度。通过应用线性微分方程(LDE),对控制方程进行了分析求解。研究了相关物理参数(如材料参数、达西数、埃克特数、普朗特数和粘度比)对速度、微旋转、传热、流速、传热率、壁面剪应力和努塞尔特数的影响。这项研究工作最重要的发现是,达西数的增加意味着渗透性的增强,从而导致更高的流速。当材料参数范围最小时,顶部的传热速率最大,而提高粘度比会导致底部的传热速率增加。材料参数的增加会影响努塞尔特数,并降低其性质。我们的研究结果与之前得出的结果相吻合。本研究的设置可用于石油开采、油田储层岩石中的传输问题、改善组织工程中的营养传输和热调节,以及设计更高效的药物输送系统和生物医学设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flow and heat transfer of non-miscible micropolar and Newtonian fluid in porous channel sandwiched between parallel plates

An analytical approach has been considered to inspect the flow and heat transfer of immiscible Newtonian and micropolar fluid in a porous medium. This study aims to elucidate the Darcy effect on the model in which isotropic porous regions with different permeability are used. The model of the current problem explains that the flow region is divided into two regions: Newtonian fluid flows in the upper layer, and micropolar fluid flows in the lower layer. Different constant temperatures imposed at boundary walls, heat transfer does not affect the pressure gradient. The governing equations are solved analytically by applying a linear differential equation (LDE). The effect of associated physical parameters such as material parameter, Darcy number, Eckert number, Prandtl number, and viscosity ratio on velocity, micro-rotation, heat transfer, flow rate, heat transfer rate, wall shear stress, and Nusselt number have been inspected. The most significant finding of this research work is that increasing the Darcy number signifies enhanced permeability, resulting in a higher flow rate. The heat transfer rate at the top occurs maximum when the material parameter’s range is minimum while raising the viscosity ratio leads to an increasing heat transfer rate at the bottom. Enhancement in material parameter influences Nusselt number and decreases in nature. The findings of our study are verified with the previously established results. The present work has a setup that is useful in petroleum extraction, transport problems in reservoir rock of an oil field, improving nutrient transport and thermal regulation in tissue engineering, and designing more efficient drug delivery systems and biomedical devices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Journal of Physics
Chinese Journal of Physics 物理-物理:综合
CiteScore
8.50
自引率
10.00%
发文量
361
审稿时长
44 days
期刊介绍: The Chinese Journal of Physics publishes important advances in various branches in physics, including statistical and biophysical physics, condensed matter physics, atomic/molecular physics, optics, particle physics and nuclear physics. The editors welcome manuscripts on: -General Physics: Statistical and Quantum Mechanics, etc.- Gravitation and Astrophysics- Elementary Particles and Fields- Nuclear Physics- Atomic, Molecular, and Optical Physics- Quantum Information and Quantum Computation- Fluid Dynamics, Nonlinear Dynamics, Chaos, and Complex Networks- Plasma and Beam Physics- Condensed Matter: Structure, etc.- Condensed Matter: Electronic Properties, etc.- Polymer, Soft Matter, Biological, and Interdisciplinary Physics. CJP publishes regular research papers, feature articles and review papers.
期刊最新文献
The evolution of dissipative soliton resonance from noise-like pulse via the saturable absorption to reverse saturable absorption transition within covalent organic framework saturable absorbers Manipulating dwell time and spin polarization via δ-doping for electrons in spin-orbit-coupling modulated magnetic nanostructure Simultaneous cooling of high-frequency difference resonators through voltage modulation and intracavity-squeezed light Dynamical analysis and hardware verification of a new multistable memristive hyperchaotic map Ultrahigh quality factor cavity based on double dielectric nanocylinder metasurfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1