激光粉末床熔融成分分级的 Invar36/Ni22Cr3

IF 4.6 2区 物理与天体物理 Q1 OPTICS Optics and Laser Technology Pub Date : 2024-09-14 DOI:10.1016/j.optlastec.2024.111789
{"title":"激光粉末床熔融成分分级的 Invar36/Ni22Cr3","authors":"","doi":"10.1016/j.optlastec.2024.111789","DOIUrl":null,"url":null,"abstract":"<div><p>Functionally graded materials directly bonded with various alloys may result in high internal stress and defects at the interface due to the mutation of the component elements, thus affecting the quality of the formed specimens. Compositionally graded alloys (CGA) based on the LPBF process can achieve uniform changes in elements to reduce the occurrence of defects. The microstructure, mechanical properties and thermal expansion properties of Invar36/Ni22Cr3 CGA alloy were investigated in this paper. The sample has a high relative density, with a density of about 99.78 % on the Ni22Cr3 side. As the Ni22Cr3 content (10 wt% Invar36) increases, the single fcc γ phase transforms into the fcc γ and bccα phases. The S5 sample is particularly unique, with a smaller grain size of 11.46 (±2.23) μm, and a larger KAM value. The S1 sample has the highest elongation of about 35.0 (±0.63) % compared to other representative samples. With the change in temperature, Invar36/Ni22Cr3 CGA represents a significant change in the thermal expansion displacement curve of the sample.</p></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Laser powder bed fusion of compositionally graded Invar36/Ni22Cr3\",\"authors\":\"\",\"doi\":\"10.1016/j.optlastec.2024.111789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Functionally graded materials directly bonded with various alloys may result in high internal stress and defects at the interface due to the mutation of the component elements, thus affecting the quality of the formed specimens. Compositionally graded alloys (CGA) based on the LPBF process can achieve uniform changes in elements to reduce the occurrence of defects. The microstructure, mechanical properties and thermal expansion properties of Invar36/Ni22Cr3 CGA alloy were investigated in this paper. The sample has a high relative density, with a density of about 99.78 % on the Ni22Cr3 side. As the Ni22Cr3 content (10 wt% Invar36) increases, the single fcc γ phase transforms into the fcc γ and bccα phases. The S5 sample is particularly unique, with a smaller grain size of 11.46 (±2.23) μm, and a larger KAM value. The S1 sample has the highest elongation of about 35.0 (±0.63) % compared to other representative samples. With the change in temperature, Invar36/Ni22Cr3 CGA represents a significant change in the thermal expansion displacement curve of the sample.</p></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224012477\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012477","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

功能分级材料与各种合金直接粘合后,由于成分元素的突变,可能会导致界面处产生高内应力和缺陷,从而影响成型试样的质量。基于 LPBF 工艺的成分分级合金(CGA)可以实现元素的均匀变化,从而减少缺陷的发生。本文研究了 Invar36/Ni22Cr3 CGA 合金的微观结构、机械性能和热膨胀性能。该样品具有较高的相对密度,Ni22Cr3 侧的密度约为 99.78%。随着 Ni22Cr3 含量(10 wt% Invar36)的增加,单一的 fcc γ 相转变为 fcc γ 和 bccα 相。S5 样品尤其独特,其晶粒尺寸较小,为 11.46 (±2.23) μm,KAM 值较大。与其他代表性样品相比,S1 样品的伸长率最高,约为 35.0 (±0.63) %。随着温度的变化,Invar36/Ni22Cr3 CGA 代表了样品热膨胀位移曲线的显著变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laser powder bed fusion of compositionally graded Invar36/Ni22Cr3

Functionally graded materials directly bonded with various alloys may result in high internal stress and defects at the interface due to the mutation of the component elements, thus affecting the quality of the formed specimens. Compositionally graded alloys (CGA) based on the LPBF process can achieve uniform changes in elements to reduce the occurrence of defects. The microstructure, mechanical properties and thermal expansion properties of Invar36/Ni22Cr3 CGA alloy were investigated in this paper. The sample has a high relative density, with a density of about 99.78 % on the Ni22Cr3 side. As the Ni22Cr3 content (10 wt% Invar36) increases, the single fcc γ phase transforms into the fcc γ and bccα phases. The S5 sample is particularly unique, with a smaller grain size of 11.46 (±2.23) μm, and a larger KAM value. The S1 sample has the highest elongation of about 35.0 (±0.63) % compared to other representative samples. With the change in temperature, Invar36/Ni22Cr3 CGA represents a significant change in the thermal expansion displacement curve of the sample.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
10.00%
发文量
1060
审稿时长
3.4 months
期刊介绍: Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication. The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas: •development in all types of lasers •developments in optoelectronic devices and photonics •developments in new photonics and optical concepts •developments in conventional optics, optical instruments and components •techniques of optical metrology, including interferometry and optical fibre sensors •LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow •applications of lasers to materials processing, optical NDT display (including holography) and optical communication •research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume) •developments in optical computing and optical information processing •developments in new optical materials •developments in new optical characterization methods and techniques •developments in quantum optics •developments in light assisted micro and nanofabrication methods and techniques •developments in nanophotonics and biophotonics •developments in imaging processing and systems
期刊最新文献
Control of photothermal liquid jets through microbubble Regulation: Fundamental mechanisms and Developing Strategies Multi-parameter reconstruction of interference harmonics by effective tuning combination selection and sampling boundary fitting Semantic ghost imaging based on semantic coding Enhanced beam quality of high-energy lasers utilizing fused silica as an all-solid-state SBS-PCM Efficient high-power 1.9 µm picosecond Raman laser in H2-filled hollow-core fiber without generation of rotational lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1