Xing Wang , Yadong Xu , Jiliang Liu , Quanzhen Zhang , Hongyan Yin , Can Zhang , Laurence A. Belfiore , Sui Mao , Jianguo Tang
{"title":"Control of photothermal liquid jets through microbubble Regulation: Fundamental mechanisms and Developing Strategies","authors":"Xing Wang , Yadong Xu , Jiliang Liu , Quanzhen Zhang , Hongyan Yin , Can Zhang , Laurence A. Belfiore , Sui Mao , Jianguo Tang","doi":"10.1016/j.optlastec.2024.111845","DOIUrl":null,"url":null,"abstract":"<div><div>Plasmon-induced photoacoustic streaming, considered as a potential application for micro-pumps in microfluidics, currently encounters ongoing debates concerning its fundamental mechanisms. In this study, we investigate the crucial role played by microbubbles in generation of jets in an ethanol aqueous solution. The power density threshold for bubble generation and its dependency on jet initiation are confirmed and the microbubble behavior is well regulated by manipulating the laser and liquid properties. Through simulations coupling fluidic and thermal fields, the significant role of Marangoni effect is validated in jet formation. Specifically, the temperature gradient of microbubbles is determined to be a pivotal factor in the generation of collimated jets. Additionally, factors influencing jetting, such as microbubble size and temperature gradients are studied, and noticeably, a stabilized jet lasting over 4 h is achieved based upon.</div></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":"181 ","pages":"Article 111845"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224013033","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Plasmon-induced photoacoustic streaming, considered as a potential application for micro-pumps in microfluidics, currently encounters ongoing debates concerning its fundamental mechanisms. In this study, we investigate the crucial role played by microbubbles in generation of jets in an ethanol aqueous solution. The power density threshold for bubble generation and its dependency on jet initiation are confirmed and the microbubble behavior is well regulated by manipulating the laser and liquid properties. Through simulations coupling fluidic and thermal fields, the significant role of Marangoni effect is validated in jet formation. Specifically, the temperature gradient of microbubbles is determined to be a pivotal factor in the generation of collimated jets. Additionally, factors influencing jetting, such as microbubble size and temperature gradients are studied, and noticeably, a stabilized jet lasting over 4 h is achieved based upon.
期刊介绍:
Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication.
The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas:
•development in all types of lasers
•developments in optoelectronic devices and photonics
•developments in new photonics and optical concepts
•developments in conventional optics, optical instruments and components
•techniques of optical metrology, including interferometry and optical fibre sensors
•LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow
•applications of lasers to materials processing, optical NDT display (including holography) and optical communication
•research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume)
•developments in optical computing and optical information processing
•developments in new optical materials
•developments in new optical characterization methods and techniques
•developments in quantum optics
•developments in light assisted micro and nanofabrication methods and techniques
•developments in nanophotonics and biophotonics
•developments in imaging processing and systems