{"title":"脑动脉:分形特性及其通过新型 \"轮廓缩放 \"分形分析方法进行的定量评估(解剖学研究)","authors":"Nataliia Maryenko, Oleksandr Stepanenko","doi":"10.1016/j.tria.2024.100352","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Arbor vitae cerebelli (tree-like branching white matter of the cerebellum) has a complex spatial configuration that is challenging to assess using conventional morphometric methods. This study proposes a fractal approach to describe and quantify the anatomy of Arbor vitae cerebelli. For this purpose, a new “contour scaling” method for fractal analysis of cerebellar white matter was developed.</p></div><div><h3>Material and methods</h3><p>The cerebella of 100 cadavers (50 male and 50 female) who died from causes unrelated to brain pathology, aged 20–95 years, were examined. Mid-sagittal sections of the cerebellar vermis were studied. The fractal dimension values of the cerebellar white matter were determined using both the developed fractal analysis method and the conventional “box counting” method, along with measurements of non-fractal parameters including cerebellar weight, area and perimeter of the vermis cross-section, perimeter-to-area ratio, and circularity.</p></div><div><h3>Results</h3><p>Considering the cerebellar white matter as a tree-like fractal, it was found to have 7 or 8 primary branches, which subdivide into 10-18 second-iteration branches, 19–38 third-iteration branches, and 34–53 fourth-iteration branches. Females more often had 8 primary branches compared to males, while males had a greater number of branches in the second to fourth iterations. The mean fractal (Hausdorff) dimension was 1.697 (1.721 in males, 1.674 in females, P = 0.01). The fractal dimension correlated most strongly with the perimeter and area of the vermis cross-section and had no significant relationship with age.</p></div><div><h3>Conclusion</h3><p>The fractal (Hausdorff) dimension, determined using the novel “contour scaling” method, quantitatively assesses the degree of branching of the cerebellar white matter. An increase in the absolute size of the cerebellum leads to a higher degree of branching of its white matter and an increase in the number of its constitutive components – white matter branches and folia.</p></div>","PeriodicalId":37913,"journal":{"name":"Translational Research in Anatomy","volume":"37 ","pages":"Article 100352"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214854X24000761/pdfft?md5=0a1bda12743f863f6ae2cdea973a54d8&pid=1-s2.0-S2214854X24000761-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Arbor vitae cerebelli: Fractal properties and their quantitative assessment by novel “contour scaling” fractal analysis method (an anatomical study)\",\"authors\":\"Nataliia Maryenko, Oleksandr Stepanenko\",\"doi\":\"10.1016/j.tria.2024.100352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Arbor vitae cerebelli (tree-like branching white matter of the cerebellum) has a complex spatial configuration that is challenging to assess using conventional morphometric methods. This study proposes a fractal approach to describe and quantify the anatomy of Arbor vitae cerebelli. For this purpose, a new “contour scaling” method for fractal analysis of cerebellar white matter was developed.</p></div><div><h3>Material and methods</h3><p>The cerebella of 100 cadavers (50 male and 50 female) who died from causes unrelated to brain pathology, aged 20–95 years, were examined. Mid-sagittal sections of the cerebellar vermis were studied. The fractal dimension values of the cerebellar white matter were determined using both the developed fractal analysis method and the conventional “box counting” method, along with measurements of non-fractal parameters including cerebellar weight, area and perimeter of the vermis cross-section, perimeter-to-area ratio, and circularity.</p></div><div><h3>Results</h3><p>Considering the cerebellar white matter as a tree-like fractal, it was found to have 7 or 8 primary branches, which subdivide into 10-18 second-iteration branches, 19–38 third-iteration branches, and 34–53 fourth-iteration branches. Females more often had 8 primary branches compared to males, while males had a greater number of branches in the second to fourth iterations. The mean fractal (Hausdorff) dimension was 1.697 (1.721 in males, 1.674 in females, P = 0.01). The fractal dimension correlated most strongly with the perimeter and area of the vermis cross-section and had no significant relationship with age.</p></div><div><h3>Conclusion</h3><p>The fractal (Hausdorff) dimension, determined using the novel “contour scaling” method, quantitatively assesses the degree of branching of the cerebellar white matter. An increase in the absolute size of the cerebellum leads to a higher degree of branching of its white matter and an increase in the number of its constitutive components – white matter branches and folia.</p></div>\",\"PeriodicalId\":37913,\"journal\":{\"name\":\"Translational Research in Anatomy\",\"volume\":\"37 \",\"pages\":\"Article 100352\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2214854X24000761/pdfft?md5=0a1bda12743f863f6ae2cdea973a54d8&pid=1-s2.0-S2214854X24000761-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational Research in Anatomy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214854X24000761\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Research in Anatomy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214854X24000761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Arbor vitae cerebelli: Fractal properties and their quantitative assessment by novel “contour scaling” fractal analysis method (an anatomical study)
Background
Arbor vitae cerebelli (tree-like branching white matter of the cerebellum) has a complex spatial configuration that is challenging to assess using conventional morphometric methods. This study proposes a fractal approach to describe and quantify the anatomy of Arbor vitae cerebelli. For this purpose, a new “contour scaling” method for fractal analysis of cerebellar white matter was developed.
Material and methods
The cerebella of 100 cadavers (50 male and 50 female) who died from causes unrelated to brain pathology, aged 20–95 years, were examined. Mid-sagittal sections of the cerebellar vermis were studied. The fractal dimension values of the cerebellar white matter were determined using both the developed fractal analysis method and the conventional “box counting” method, along with measurements of non-fractal parameters including cerebellar weight, area and perimeter of the vermis cross-section, perimeter-to-area ratio, and circularity.
Results
Considering the cerebellar white matter as a tree-like fractal, it was found to have 7 or 8 primary branches, which subdivide into 10-18 second-iteration branches, 19–38 third-iteration branches, and 34–53 fourth-iteration branches. Females more often had 8 primary branches compared to males, while males had a greater number of branches in the second to fourth iterations. The mean fractal (Hausdorff) dimension was 1.697 (1.721 in males, 1.674 in females, P = 0.01). The fractal dimension correlated most strongly with the perimeter and area of the vermis cross-section and had no significant relationship with age.
Conclusion
The fractal (Hausdorff) dimension, determined using the novel “contour scaling” method, quantitatively assesses the degree of branching of the cerebellar white matter. An increase in the absolute size of the cerebellum leads to a higher degree of branching of its white matter and an increase in the number of its constitutive components – white matter branches and folia.
期刊介绍:
Translational Research in Anatomy is an international peer-reviewed and open access journal that publishes high-quality original papers. Focusing on translational research, the journal aims to disseminate the knowledge that is gained in the basic science of anatomy and to apply it to the diagnosis and treatment of human pathology in order to improve individual patient well-being. Topics published in Translational Research in Anatomy include anatomy in all of its aspects, especially those that have application to other scientific disciplines including the health sciences: • gross anatomy • neuroanatomy • histology • immunohistochemistry • comparative anatomy • embryology • molecular biology • microscopic anatomy • forensics • imaging/radiology • medical education Priority will be given to studies that clearly articulate their relevance to the broader aspects of anatomy and how they can impact patient care.Strengthening the ties between morphological research and medicine will foster collaboration between anatomists and physicians. Therefore, Translational Research in Anatomy will serve as a platform for communication and understanding between the disciplines of anatomy and medicine and will aid in the dissemination of anatomical research. The journal accepts the following article types: 1. Review articles 2. Original research papers 3. New state-of-the-art methods of research in the field of anatomy including imaging, dissection methods, medical devices and quantitation 4. Education papers (teaching technologies/methods in medical education in anatomy) 5. Commentaries 6. Letters to the Editor 7. Selected conference papers 8. Case Reports