藻酸盐作为可持续生物降解材料在医疗和环境领域的应用--案例研究

IF 3.2 4区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of biomedical materials research. Part B, Applied biomaterials Pub Date : 2024-09-13 DOI:10.1002/jbm.b.35475
Alicja Wawszczak, Janusz Kocki, Dorota Kołodyńska
{"title":"藻酸盐作为可持续生物降解材料在医疗和环境领域的应用--案例研究","authors":"Alicja Wawszczak,&nbsp;Janusz Kocki,&nbsp;Dorota Kołodyńska","doi":"10.1002/jbm.b.35475","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Alginates are salts of alginic acid derived mainly from sea algae of the genus brown algae. They are also synthesized by some bacteria. They belong to negatively charged polysaccharides exhibiting some rheological properties. High plasticity and the ability to modify the structure are the reasons for their application in numerous industries. Moreover, when in contact with the living tissue, they do not trigger an immune response, and for this reason they are the most often tested materials for medical applications. The paper discusses the latest applications, including 3D bioprinting, drug delivery systems, and sorptive properties. Recognizing alginates as biomaterials, it emphasizes the necessity for precise processing and modification to industrialize them for specific uses. This review aims to provide a thorough understanding of the advancements in alginate research, underscoring their potential for innovative applications.</p>\n </div>","PeriodicalId":15269,"journal":{"name":"Journal of biomedical materials research. Part B, Applied biomaterials","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Alginate as a Sustainable and Biodegradable Material for Medical and Environmental Applications—The Case Studies\",\"authors\":\"Alicja Wawszczak,&nbsp;Janusz Kocki,&nbsp;Dorota Kołodyńska\",\"doi\":\"10.1002/jbm.b.35475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Alginates are salts of alginic acid derived mainly from sea algae of the genus brown algae. They are also synthesized by some bacteria. They belong to negatively charged polysaccharides exhibiting some rheological properties. High plasticity and the ability to modify the structure are the reasons for their application in numerous industries. Moreover, when in contact with the living tissue, they do not trigger an immune response, and for this reason they are the most often tested materials for medical applications. The paper discusses the latest applications, including 3D bioprinting, drug delivery systems, and sorptive properties. Recognizing alginates as biomaterials, it emphasizes the necessity for precise processing and modification to industrialize them for specific uses. This review aims to provide a thorough understanding of the advancements in alginate research, underscoring their potential for innovative applications.</p>\\n </div>\",\"PeriodicalId\":15269,\"journal\":{\"name\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomedical materials research. Part B, Applied biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35475\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part B, Applied biomaterials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.b.35475","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

藻酸盐是藻酸的盐类,主要从褐藻属海藻中提取。某些细菌也能合成它们。它们属于带负电荷的多糖,具有一定的流变特性。高可塑性和可改变结构的能力是它们应用于众多行业的原因。此外,当与活体组织接触时,它们不会引发免疫反应,因此它们是最常被测试的医疗应用材料。本文讨论了藻酸盐的最新应用,包括三维生物打印、给药系统和吸附特性。在承认藻酸盐是生物材料的同时,本文强调了精确加工和改性的必要性,以便将其工业化用于特定用途。本综述旨在提供对藻酸盐研究进展的透彻了解,强调其创新应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Alginate as a Sustainable and Biodegradable Material for Medical and Environmental Applications—The Case Studies

Alginates are salts of alginic acid derived mainly from sea algae of the genus brown algae. They are also synthesized by some bacteria. They belong to negatively charged polysaccharides exhibiting some rheological properties. High plasticity and the ability to modify the structure are the reasons for their application in numerous industries. Moreover, when in contact with the living tissue, they do not trigger an immune response, and for this reason they are the most often tested materials for medical applications. The paper discusses the latest applications, including 3D bioprinting, drug delivery systems, and sorptive properties. Recognizing alginates as biomaterials, it emphasizes the necessity for precise processing and modification to industrialize them for specific uses. This review aims to provide a thorough understanding of the advancements in alginate research, underscoring their potential for innovative applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
2.90%
发文量
199
审稿时长
12 months
期刊介绍: Journal of Biomedical Materials Research – Part B: Applied Biomaterials is a highly interdisciplinary peer-reviewed journal serving the needs of biomaterials professionals who design, develop, produce and apply biomaterials and medical devices. It has the common focus of biomaterials applied to the human body and covers all disciplines where medical devices are used. Papers are published on biomaterials related to medical device development and manufacture, degradation in the body, nano- and biomimetic- biomaterials interactions, mechanics of biomaterials, implant retrieval and analysis, tissue-biomaterial surface interactions, wound healing, infection, drug delivery, standards and regulation of devices, animal and pre-clinical studies of biomaterials and medical devices, and tissue-biopolymer-material combination products. Manuscripts are published in one of six formats: • original research reports • short research and development reports • scientific reviews • current concepts articles • special reports • editorials Journal of Biomedical Materials Research – Part B: Applied Biomaterials is an official journal of the Society for Biomaterials, Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials. Manuscripts from all countries are invited but must be in English. Authors are not required to be members of the affiliated Societies, but members of these societies are encouraged to submit their work to the journal for consideration.
期刊最新文献
Accelerated In Vitro Oxidative Degradation Testing of Ultra-High Molecular Weight Polyethylene (UHMWPE) Issue Information Biocompatible and Safe Decellularized Spinach With Antibacterial and Wound Healing Activity In Vitro and In Vivo Biocompatibility of Bacterial Cellulose Molecular Biomarkers for In Vitro Thrombogenicity Assessment of Medical Device Materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1