超导量子电路中原子尺度缺陷的声子工程学

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-09-13 DOI:10.1126/sciadv.ado6240
Mo Chen, John Clai Owens, Harald Putterman, Max Schäfer, Oskar Painter
{"title":"超导量子电路中原子尺度缺陷的声子工程学","authors":"Mo Chen,&nbsp;John Clai Owens,&nbsp;Harald Putterman,&nbsp;Max Schäfer,&nbsp;Oskar Painter","doi":"10.1126/sciadv.ado6240","DOIUrl":null,"url":null,"abstract":"<div >Noise within solid-state systems at low temperatures can typically be traced back to material defects. In amorphous materials, these defects are broadly described by the tunneling two-level systems (TLSs) model. TLS have recently taken on further relevance in quantum computing because they dominate the coherence limit of superconducting quantum circuits. Efforts to mitigate TLS impacts have thus far focused on circuit design, material selection, and surface treatments. Our work takes an approach that directly modifies TLS properties. This is achieved by creating an acoustic bandgap that suppresses all microwave-frequency phonons around the operating frequency of a transmon qubit. For embedded TLS strongly coupled to the transmon qubit, we measure a pronounced increase in relaxation time by two orders of magnitude, with the longest <i>T</i><sub>1</sub> time exceeding 5 milliseconds. Our work opens avenues for studying the physics of highly coherent TLS and methods for mitigating noise within solid-state quantum devices.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ado6240","citationCount":"0","resultStr":"{\"title\":\"Phonon engineering of atomic-scale defects in superconducting quantum circuits\",\"authors\":\"Mo Chen,&nbsp;John Clai Owens,&nbsp;Harald Putterman,&nbsp;Max Schäfer,&nbsp;Oskar Painter\",\"doi\":\"10.1126/sciadv.ado6240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Noise within solid-state systems at low temperatures can typically be traced back to material defects. In amorphous materials, these defects are broadly described by the tunneling two-level systems (TLSs) model. TLS have recently taken on further relevance in quantum computing because they dominate the coherence limit of superconducting quantum circuits. Efforts to mitigate TLS impacts have thus far focused on circuit design, material selection, and surface treatments. Our work takes an approach that directly modifies TLS properties. This is achieved by creating an acoustic bandgap that suppresses all microwave-frequency phonons around the operating frequency of a transmon qubit. For embedded TLS strongly coupled to the transmon qubit, we measure a pronounced increase in relaxation time by two orders of magnitude, with the longest <i>T</i><sub>1</sub> time exceeding 5 milliseconds. Our work opens avenues for studying the physics of highly coherent TLS and methods for mitigating noise within solid-state quantum devices.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ado6240\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ado6240\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ado6240","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

固态系统在低温下产生的噪声通常可以追溯到材料缺陷。在非晶材料中,这些缺陷大致可以用隧道两级系统(TLS)模型来描述。由于 TLS 主导了超导量子电路的相干极限,因此它最近在量子计算中的意义更加重大。迄今为止,减轻 TLS 影响的努力主要集中在电路设计、材料选择和表面处理方面。我们的工作采用了一种直接改变 TLS 特性的方法。这是通过创建声带隙来实现的,声带隙能抑制传声量子比特工作频率周围的所有微波频率声子。对于与跨mon qubit强耦合的嵌入式 TLS,我们测量到弛豫时间明显增加了两个数量级,最长的 T1 时间超过了 5 毫秒。我们的工作为研究高度相干 TLS 的物理学以及固态量子器件中的噪声缓解方法开辟了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phonon engineering of atomic-scale defects in superconducting quantum circuits
Noise within solid-state systems at low temperatures can typically be traced back to material defects. In amorphous materials, these defects are broadly described by the tunneling two-level systems (TLSs) model. TLS have recently taken on further relevance in quantum computing because they dominate the coherence limit of superconducting quantum circuits. Efforts to mitigate TLS impacts have thus far focused on circuit design, material selection, and surface treatments. Our work takes an approach that directly modifies TLS properties. This is achieved by creating an acoustic bandgap that suppresses all microwave-frequency phonons around the operating frequency of a transmon qubit. For embedded TLS strongly coupled to the transmon qubit, we measure a pronounced increase in relaxation time by two orders of magnitude, with the longest T1 time exceeding 5 milliseconds. Our work opens avenues for studying the physics of highly coherent TLS and methods for mitigating noise within solid-state quantum devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Synaptic-like plasticity in 2D nanofluidic memristor from competitive bicationic transport Single-step synthesis of shaped polymeric particles using initiated chemical vapor deposition in liquid crystals Tailored ultrasound propagation in microscale metamaterials via inertia design Physical experiments of waves generated by submerged steam eruptions with applications to volcanic tsunamis Mitochondrial elongation impairs breast cancer metastasis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1