超分子支架定向二维组装五碳烯,使其形成有利于单子裂变的构型

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2024-09-13 DOI:10.1126/sciadv.adn7763
Masato Fukumitsu, Tomoya Fukui, Yoshiaki Shoji, Takashi Kajitani, Ramsha Khan, Nikolai V. Tkachenko, Hayato Sakai, Taku Hasobe, Takanori Fukushima
{"title":"超分子支架定向二维组装五碳烯,使其形成有利于单子裂变的构型","authors":"Masato Fukumitsu,&nbsp;Tomoya Fukui,&nbsp;Yoshiaki Shoji,&nbsp;Takashi Kajitani,&nbsp;Ramsha Khan,&nbsp;Nikolai V. Tkachenko,&nbsp;Hayato Sakai,&nbsp;Taku Hasobe,&nbsp;Takanori Fukushima","doi":"10.1126/sciadv.adn7763","DOIUrl":null,"url":null,"abstract":"<div >Molecular assemblies featuring two-dimensionality have attracted increasing attention, whereas such structures are difficult to construct simply relying on spontaneous molecular assembly. Here, we present two-dimensional assemblies of acene chromophores achieved using a tripodal triptycene supramolecular scaffold, which have been shown to exhibit a strong ability to assemble molecular and polymer motifs two-dimensionally. We designed pentacene and anthracene derivatives sandwiched by two triptycene units. These compounds assemble into expected two-dimensional structures, with the pentacene chromophores having both sufficient overlap to cause singlet fission and space for conformational change to facilitate the dissociation of a triplet pair into free triplets, which is not the case for the anthracene analog. Detailed spectroscopic analysis revealed that the pentacene chromophore in the assembly undergoes singlet fission with a quantum yield of 88 ± 5%, giving rise to triplet pairs, from which free triplets are efficiently generated (Φ<sub>T</sub> = 130 ± 8.8%). This demonstrates the utility of the triptycene-based scaffold to design functional π-electronic molecular assemblies.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adn7763","citationCount":"0","resultStr":"{\"title\":\"Supramolecular scaffold–directed two-dimensional assembly of pentacene into a configuration to facilitate singlet fission\",\"authors\":\"Masato Fukumitsu,&nbsp;Tomoya Fukui,&nbsp;Yoshiaki Shoji,&nbsp;Takashi Kajitani,&nbsp;Ramsha Khan,&nbsp;Nikolai V. Tkachenko,&nbsp;Hayato Sakai,&nbsp;Taku Hasobe,&nbsp;Takanori Fukushima\",\"doi\":\"10.1126/sciadv.adn7763\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Molecular assemblies featuring two-dimensionality have attracted increasing attention, whereas such structures are difficult to construct simply relying on spontaneous molecular assembly. Here, we present two-dimensional assemblies of acene chromophores achieved using a tripodal triptycene supramolecular scaffold, which have been shown to exhibit a strong ability to assemble molecular and polymer motifs two-dimensionally. We designed pentacene and anthracene derivatives sandwiched by two triptycene units. These compounds assemble into expected two-dimensional structures, with the pentacene chromophores having both sufficient overlap to cause singlet fission and space for conformational change to facilitate the dissociation of a triplet pair into free triplets, which is not the case for the anthracene analog. Detailed spectroscopic analysis revealed that the pentacene chromophore in the assembly undergoes singlet fission with a quantum yield of 88 ± 5%, giving rise to triplet pairs, from which free triplets are efficiently generated (Φ<sub>T</sub> = 130 ± 8.8%). This demonstrates the utility of the triptycene-based scaffold to design functional π-electronic molecular assemblies.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.adn7763\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.adn7763\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adn7763","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

具有二维特征的分子组装体引起了越来越多的关注,而这种结构仅靠自发分子组装很难构建。在这里,我们介绍了利用三足鼎立的三庚烯超分子支架实现的烯类发色团的二维组装,这种支架已被证明具有很强的分子和聚合物图案二维组装能力。我们设计了夹有两个三庚烯单元的并五苯和蒽衍生物。这些化合物组装成了预期的二维结构,其中的五碳烯发色团既有足够的重叠以导致单电子裂变,又有足够的构象变化空间以促进三重子对解离成自由三重子,而蒽类似物则没有这种情况。详细的光谱分析显示,组装体中的并五苯发色团发生了量子产率为 88 ± 5%的单线裂变,产生了三重子对,并从中有效地生成了自由三重子(ΦT = 130 ± 8.8%)。这证明了基于三庚烯的支架在设计功能性 π 电子分子组装体方面的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supramolecular scaffold–directed two-dimensional assembly of pentacene into a configuration to facilitate singlet fission
Molecular assemblies featuring two-dimensionality have attracted increasing attention, whereas such structures are difficult to construct simply relying on spontaneous molecular assembly. Here, we present two-dimensional assemblies of acene chromophores achieved using a tripodal triptycene supramolecular scaffold, which have been shown to exhibit a strong ability to assemble molecular and polymer motifs two-dimensionally. We designed pentacene and anthracene derivatives sandwiched by two triptycene units. These compounds assemble into expected two-dimensional structures, with the pentacene chromophores having both sufficient overlap to cause singlet fission and space for conformational change to facilitate the dissociation of a triplet pair into free triplets, which is not the case for the anthracene analog. Detailed spectroscopic analysis revealed that the pentacene chromophore in the assembly undergoes singlet fission with a quantum yield of 88 ± 5%, giving rise to triplet pairs, from which free triplets are efficiently generated (ΦT = 130 ± 8.8%). This demonstrates the utility of the triptycene-based scaffold to design functional π-electronic molecular assemblies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
Synaptic-like plasticity in 2D nanofluidic memristor from competitive bicationic transport Single-step synthesis of shaped polymeric particles using initiated chemical vapor deposition in liquid crystals Tailored ultrasound propagation in microscale metamaterials via inertia design Physical experiments of waves generated by submerged steam eruptions with applications to volcanic tsunamis Mitochondrial elongation impairs breast cancer metastasis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1