Roxana Disela, Tim Neijenhuis, Olivier Le Bussy, Geoffroy Geldhof, Marieke Klijn, Martin Pabst, Marcel Ottens
{"title":"制备色谱过程中大肠杆菌宿主细胞蛋白质组保留的实验表征与预测","authors":"Roxana Disela, Tim Neijenhuis, Olivier Le Bussy, Geoffroy Geldhof, Marieke Klijn, Martin Pabst, Marcel Ottens","doi":"10.1002/bit.28840","DOIUrl":null,"url":null,"abstract":"<p>Purification of recombinantly produced biopharmaceuticals involves removal of host cell material, such as host cell proteins (HCPs). For lysates of the common expression host <i>Escherichia coli</i> (<i>E. coli</i>) over 1500 unique proteins can be identified. Currently, understanding the behavior of individual HCPs for purification operations, such as preparative chromatography, is limited. Therefore, we aim to elucidate the elution behavior of individual HCPs from <i>E. coli</i> strain BLR(DE3) during chromatography. Understanding this complex mixture and knowing the chromatographic behavior of each individual HCP improves the ability for rational purification process design. Specifically, linear gradient experiments were performed using ion exchange (IEX) and hydrophobic interaction chromatography, coupled with mass spectrometry-based proteomics to map the retention of individual HCPs. We combined knowledge of protein location, function, and interaction available in literature to identify trends in elution behavior. Additionally, quantitative structure–property relationship models were trained relating the protein 3D structure to elution behavior during IEX. For the complete data set a model with a cross-validated <i>R</i><sup>2</sup> of 0.55 was constructed, that could be improved to a <i>R</i><sup>2</sup> of 0.70 by considering only monomeric proteins. Ultimately this study is a significant step toward greater process understanding.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":"121 12","pages":"3848-3859"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bit.28840","citationCount":"0","resultStr":"{\"title\":\"Experimental characterization and prediction of Escherichia coli host cell proteome retention during preparative chromatography\",\"authors\":\"Roxana Disela, Tim Neijenhuis, Olivier Le Bussy, Geoffroy Geldhof, Marieke Klijn, Martin Pabst, Marcel Ottens\",\"doi\":\"10.1002/bit.28840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Purification of recombinantly produced biopharmaceuticals involves removal of host cell material, such as host cell proteins (HCPs). For lysates of the common expression host <i>Escherichia coli</i> (<i>E. coli</i>) over 1500 unique proteins can be identified. Currently, understanding the behavior of individual HCPs for purification operations, such as preparative chromatography, is limited. Therefore, we aim to elucidate the elution behavior of individual HCPs from <i>E. coli</i> strain BLR(DE3) during chromatography. Understanding this complex mixture and knowing the chromatographic behavior of each individual HCP improves the ability for rational purification process design. Specifically, linear gradient experiments were performed using ion exchange (IEX) and hydrophobic interaction chromatography, coupled with mass spectrometry-based proteomics to map the retention of individual HCPs. We combined knowledge of protein location, function, and interaction available in literature to identify trends in elution behavior. Additionally, quantitative structure–property relationship models were trained relating the protein 3D structure to elution behavior during IEX. For the complete data set a model with a cross-validated <i>R</i><sup>2</sup> of 0.55 was constructed, that could be improved to a <i>R</i><sup>2</sup> of 0.70 by considering only monomeric proteins. Ultimately this study is a significant step toward greater process understanding.</p>\",\"PeriodicalId\":9168,\"journal\":{\"name\":\"Biotechnology and Bioengineering\",\"volume\":\"121 12\",\"pages\":\"3848-3859\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bit.28840\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology and Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bit.28840\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bit.28840","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Experimental characterization and prediction of Escherichia coli host cell proteome retention during preparative chromatography
Purification of recombinantly produced biopharmaceuticals involves removal of host cell material, such as host cell proteins (HCPs). For lysates of the common expression host Escherichia coli (E. coli) over 1500 unique proteins can be identified. Currently, understanding the behavior of individual HCPs for purification operations, such as preparative chromatography, is limited. Therefore, we aim to elucidate the elution behavior of individual HCPs from E. coli strain BLR(DE3) during chromatography. Understanding this complex mixture and knowing the chromatographic behavior of each individual HCP improves the ability for rational purification process design. Specifically, linear gradient experiments were performed using ion exchange (IEX) and hydrophobic interaction chromatography, coupled with mass spectrometry-based proteomics to map the retention of individual HCPs. We combined knowledge of protein location, function, and interaction available in literature to identify trends in elution behavior. Additionally, quantitative structure–property relationship models were trained relating the protein 3D structure to elution behavior during IEX. For the complete data set a model with a cross-validated R2 of 0.55 was constructed, that could be improved to a R2 of 0.70 by considering only monomeric proteins. Ultimately this study is a significant step toward greater process understanding.
期刊介绍:
Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include:
-Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering
-Animal-cell biotechnology, including media development
-Applied aspects of cellular physiology, metabolism, and energetics
-Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology
-Biothermodynamics
-Biofuels, including biomass and renewable resource engineering
-Biomaterials, including delivery systems and materials for tissue engineering
-Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control
-Biosensors and instrumentation
-Computational and systems biology, including bioinformatics and genomic/proteomic studies
-Environmental biotechnology, including biofilms, algal systems, and bioremediation
-Metabolic and cellular engineering
-Plant-cell biotechnology
-Spectroscopic and other analytical techniques for biotechnological applications
-Synthetic biology
-Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems
The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.