{"title":"利用双权重网进行无监督多视图图表示学习","authors":"Yujie Mo , Heng Tao Shen , Xiaofeng Zhu","doi":"10.1016/j.inffus.2024.102669","DOIUrl":null,"url":null,"abstract":"<div><p>Unsupervised multi-view graph representation learning (UMGRL) aims to capture the complex relationships in the multi-view graph without human annotations, so it has been widely applied in real-world applications. However, existing UMGRL methods still face the issues as follows: (i) Previous UMGRL methods tend to overlook the importance of nodes with different influences and the importance of graphs with different relationships, so that they may lose discriminative information in nodes with large influences and graphs with important relationships. (ii) Previous UMGRL methods generally ignore the heterophilic edges in the multi-view graph to possibly introduce noise from different classes into node representations. To address these issues, we propose a novel bi-level optimization UMGRL framework with dual weight-net. Specifically, the lower-level optimizes the parameters of encoders to obtain node representations of different graphs, while the upper-level optimizes the parameters of the dual weight-net to adaptively and dynamically capture the importance of node level, graph level, and edge level, thus obtaining discriminative fused representations for downstream tasks. Moreover, theoretical analysis demonstrates that the proposed method shows a better generalization ability on downstream tasks, compared to previous UMGRL methods. Extensive experimental results verify the effectiveness of the proposed method on public datasets, in terms of different downstream tasks, compared to numerous comparison methods.</p></div>","PeriodicalId":50367,"journal":{"name":"Information Fusion","volume":"114 ","pages":"Article 102669"},"PeriodicalIF":14.7000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised multi-view graph representation learning with dual weight-net\",\"authors\":\"Yujie Mo , Heng Tao Shen , Xiaofeng Zhu\",\"doi\":\"10.1016/j.inffus.2024.102669\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Unsupervised multi-view graph representation learning (UMGRL) aims to capture the complex relationships in the multi-view graph without human annotations, so it has been widely applied in real-world applications. However, existing UMGRL methods still face the issues as follows: (i) Previous UMGRL methods tend to overlook the importance of nodes with different influences and the importance of graphs with different relationships, so that they may lose discriminative information in nodes with large influences and graphs with important relationships. (ii) Previous UMGRL methods generally ignore the heterophilic edges in the multi-view graph to possibly introduce noise from different classes into node representations. To address these issues, we propose a novel bi-level optimization UMGRL framework with dual weight-net. Specifically, the lower-level optimizes the parameters of encoders to obtain node representations of different graphs, while the upper-level optimizes the parameters of the dual weight-net to adaptively and dynamically capture the importance of node level, graph level, and edge level, thus obtaining discriminative fused representations for downstream tasks. Moreover, theoretical analysis demonstrates that the proposed method shows a better generalization ability on downstream tasks, compared to previous UMGRL methods. Extensive experimental results verify the effectiveness of the proposed method on public datasets, in terms of different downstream tasks, compared to numerous comparison methods.</p></div>\",\"PeriodicalId\":50367,\"journal\":{\"name\":\"Information Fusion\",\"volume\":\"114 \",\"pages\":\"Article 102669\"},\"PeriodicalIF\":14.7000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information Fusion\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1566253524004470\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Fusion","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1566253524004470","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Unsupervised multi-view graph representation learning with dual weight-net
Unsupervised multi-view graph representation learning (UMGRL) aims to capture the complex relationships in the multi-view graph without human annotations, so it has been widely applied in real-world applications. However, existing UMGRL methods still face the issues as follows: (i) Previous UMGRL methods tend to overlook the importance of nodes with different influences and the importance of graphs with different relationships, so that they may lose discriminative information in nodes with large influences and graphs with important relationships. (ii) Previous UMGRL methods generally ignore the heterophilic edges in the multi-view graph to possibly introduce noise from different classes into node representations. To address these issues, we propose a novel bi-level optimization UMGRL framework with dual weight-net. Specifically, the lower-level optimizes the parameters of encoders to obtain node representations of different graphs, while the upper-level optimizes the parameters of the dual weight-net to adaptively and dynamically capture the importance of node level, graph level, and edge level, thus obtaining discriminative fused representations for downstream tasks. Moreover, theoretical analysis demonstrates that the proposed method shows a better generalization ability on downstream tasks, compared to previous UMGRL methods. Extensive experimental results verify the effectiveness of the proposed method on public datasets, in terms of different downstream tasks, compared to numerous comparison methods.
期刊介绍:
Information Fusion serves as a central platform for showcasing advancements in multi-sensor, multi-source, multi-process information fusion, fostering collaboration among diverse disciplines driving its progress. It is the leading outlet for sharing research and development in this field, focusing on architectures, algorithms, and applications. Papers dealing with fundamental theoretical analyses as well as those demonstrating their application to real-world problems will be welcome.