基于可解释的机器学习方法评估以碳封存为主的生态系统的不稳定风险

IF 7 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Ecological Indicators Pub Date : 2024-09-14 DOI:10.1016/j.ecolind.2024.112593
{"title":"基于可解释的机器学习方法评估以碳封存为主的生态系统的不稳定风险","authors":"","doi":"10.1016/j.ecolind.2024.112593","DOIUrl":null,"url":null,"abstract":"<div><p>Increasing carbon sequestration (CS) in soils and biomass is an important land-based solution in mitigating global warming. Ecosystems provide a wide range of ecosystem services (ESs). The necessity to augment CS may engender alterations in the interrelationships among ESs, thereby heightening the probability of ecosystem destabilization. This study developed a framework that integrates machine learning and interpretable predictions to evaluate the destabilization risk resulting from alterations in ecosystem service relationships dominated by CS. We selected Northeastern China as study area to estimate six ESs and identified areas of destabilization risk among the three services most relevant to CS, including food production (FP), soil retention (SR), and habitat quality (HQ). Subsequently, we compared three machine learning models (random forest, extreme gradient boosting, and support vector machine) and introduced the Shapley additive interpretation (SHAP) method for driving mechanism analysis. The results showed that: (1) CS-FP had 30.28% of its area at destabilization risk and is the most significant ecosystem service pair; (2) Heilongjiang Province was the region with the highest destabilization risk of CS, with CS-FP and CS-SR accounting for 44.76% and 52.89% of all regions, respectively; (3) a non-linear relationship and the presence of threshold features between socio-ecological factors and the prediction of destabilization risk. The study has potential practical value for destabilization risks prevention, while also providing a scientific basis for formulating comprehensive carbon management policies and maintaining ecosystem stability.</p></div>","PeriodicalId":11459,"journal":{"name":"Ecological Indicators","volume":null,"pages":null},"PeriodicalIF":7.0000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1470160X24010501/pdfft?md5=503b3df40cdbfc53b9596d9ca4f4aa00&pid=1-s2.0-S1470160X24010501-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Assessing the destabilization risk of ecosystems dominated by carbon sequestration based on interpretable machine learning method\",\"authors\":\"\",\"doi\":\"10.1016/j.ecolind.2024.112593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Increasing carbon sequestration (CS) in soils and biomass is an important land-based solution in mitigating global warming. Ecosystems provide a wide range of ecosystem services (ESs). The necessity to augment CS may engender alterations in the interrelationships among ESs, thereby heightening the probability of ecosystem destabilization. This study developed a framework that integrates machine learning and interpretable predictions to evaluate the destabilization risk resulting from alterations in ecosystem service relationships dominated by CS. We selected Northeastern China as study area to estimate six ESs and identified areas of destabilization risk among the three services most relevant to CS, including food production (FP), soil retention (SR), and habitat quality (HQ). Subsequently, we compared three machine learning models (random forest, extreme gradient boosting, and support vector machine) and introduced the Shapley additive interpretation (SHAP) method for driving mechanism analysis. The results showed that: (1) CS-FP had 30.28% of its area at destabilization risk and is the most significant ecosystem service pair; (2) Heilongjiang Province was the region with the highest destabilization risk of CS, with CS-FP and CS-SR accounting for 44.76% and 52.89% of all regions, respectively; (3) a non-linear relationship and the presence of threshold features between socio-ecological factors and the prediction of destabilization risk. The study has potential practical value for destabilization risks prevention, while also providing a scientific basis for formulating comprehensive carbon management policies and maintaining ecosystem stability.</p></div>\",\"PeriodicalId\":11459,\"journal\":{\"name\":\"Ecological Indicators\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1470160X24010501/pdfft?md5=503b3df40cdbfc53b9596d9ca4f4aa00&pid=1-s2.0-S1470160X24010501-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Indicators\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1470160X24010501\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Indicators","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1470160X24010501","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

增加土壤和生物质中的碳固存(CS)是减缓全球变暖的重要陆基解决方案。生态系统提供广泛的生态系统服务(ES)。增加 CS 的必要性可能会改变 ES 之间的相互关系,从而增加生态系统不稳定的可能性。本研究开发了一个将机器学习与可解释预测相结合的框架,以评估 CS 主导的生态系统服务关系的改变所导致的不稳定风险。我们选择了中国东北地区作为研究区域,估算了六种生态系统服务,并确定了与 CS 最相关的三种服务中存在不稳定风险的区域,包括粮食生产(FP)、土壤保持(SR)和栖息地质量(HQ)。随后,我们比较了三种机器学习模型(随机森林、极端梯度提升和支持向量机),并引入了用于驱动机制分析的夏普利加法解释(SHAP)方法。结果表明(1)CS-FP 有 30.28%的面积存在失稳风险,是最重要的生态系统服务对;(2)黑龙江省是 CS 失稳风险最高的地区,CS-FP 和 CS-SR 分别占所有地区的 44.76%和 52.89%;(3)社会生态因子与失稳风险预测之间存在非线性关系和阈值特征。该研究对防止生态系统失稳风险具有潜在的实用价值,同时也为制定全面的碳管理政策和维护生态系统稳定提供了科学依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessing the destabilization risk of ecosystems dominated by carbon sequestration based on interpretable machine learning method

Increasing carbon sequestration (CS) in soils and biomass is an important land-based solution in mitigating global warming. Ecosystems provide a wide range of ecosystem services (ESs). The necessity to augment CS may engender alterations in the interrelationships among ESs, thereby heightening the probability of ecosystem destabilization. This study developed a framework that integrates machine learning and interpretable predictions to evaluate the destabilization risk resulting from alterations in ecosystem service relationships dominated by CS. We selected Northeastern China as study area to estimate six ESs and identified areas of destabilization risk among the three services most relevant to CS, including food production (FP), soil retention (SR), and habitat quality (HQ). Subsequently, we compared three machine learning models (random forest, extreme gradient boosting, and support vector machine) and introduced the Shapley additive interpretation (SHAP) method for driving mechanism analysis. The results showed that: (1) CS-FP had 30.28% of its area at destabilization risk and is the most significant ecosystem service pair; (2) Heilongjiang Province was the region with the highest destabilization risk of CS, with CS-FP and CS-SR accounting for 44.76% and 52.89% of all regions, respectively; (3) a non-linear relationship and the presence of threshold features between socio-ecological factors and the prediction of destabilization risk. The study has potential practical value for destabilization risks prevention, while also providing a scientific basis for formulating comprehensive carbon management policies and maintaining ecosystem stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ecological Indicators
Ecological Indicators 环境科学-环境科学
CiteScore
11.80
自引率
8.70%
发文量
1163
审稿时长
78 days
期刊介绍: The ultimate aim of Ecological Indicators is to integrate the monitoring and assessment of ecological and environmental indicators with management practices. The journal provides a forum for the discussion of the applied scientific development and review of traditional indicator approaches as well as for theoretical, modelling and quantitative applications such as index development. Research into the following areas will be published. • All aspects of ecological and environmental indicators and indices. • New indicators, and new approaches and methods for indicator development, testing and use. • Development and modelling of indices, e.g. application of indicator suites across multiple scales and resources. • Analysis and research of resource, system- and scale-specific indicators. • Methods for integration of social and other valuation metrics for the production of scientifically rigorous and politically-relevant assessments using indicator-based monitoring and assessment programs. • How research indicators can be transformed into direct application for management purposes. • Broader assessment objectives and methods, e.g. biodiversity, biological integrity, and sustainability, through the use of indicators. • Resource-specific indicators such as landscape, agroecosystems, forests, wetlands, etc.
期刊最新文献
Exploring the drivers and dynamics of urban waters: A case study of Wuhan from 1980 to 2060 Restoring land–water transition areas to stimulate food web development is mediated by the hydrological connectivity Accumulation characteristics of heavy metals in three wild rice species and adaptation of root morphology and anatomical structure to native soil heavy metals in Yunnan Marine biodiversity impact pathways for offshore wind farm decommissioning: Implications for Life Cycle impact assessment development Changes in landscape ecological risk in the Beijing-Tianjin Sandstorm source control project area from a spatiotemporal perspective
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1