基于多光谱成像的输送带磨损状态精确评估深度学习方法

IF 4.6 2区 物理与天体物理 Q1 OPTICS Optics and Laser Technology Pub Date : 2024-09-14 DOI:10.1016/j.optlastec.2024.111782
{"title":"基于多光谱成像的输送带磨损状态精确评估深度学习方法","authors":"","doi":"10.1016/j.optlastec.2024.111782","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate assessment of the conveyor belt wear state is a crucial part of measuring belt conveyor safety and reliability. Therefore, this paper proposes an accurate detection approach for conveyor belt wear based on multispectral imaging(MSI), and designs a lightweight network model, named depthwise shuffle coordinate attention network (DSCANet) to assess and classify conveyor belts in three wear states. The multispectral images of the conveyor belt in the Huainan mining area were collected by the MSI system, with a wavelength range of 675–975 nm. The multispectral data at the wavelength with the largest imaging differences was screened as the input to the assessment model DSCANet. Compared with other widely used neural network models, the proposed DSCANet demonstrated the best performance, achieving a classification accuracy of 98.78 %, with floating point operations(FLOPs) of only 136.53M. The findings indicate the great efficacy of the MSI and DSCANet combination in assessing the conveyor belt wear, holding importance in reducing the risk of sudden failures and enhancing production efficiency.</p></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A deep learning approach for accurate assessment of conveyor belt wear state based on multispectral imaging\",\"authors\":\"\",\"doi\":\"10.1016/j.optlastec.2024.111782\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate assessment of the conveyor belt wear state is a crucial part of measuring belt conveyor safety and reliability. Therefore, this paper proposes an accurate detection approach for conveyor belt wear based on multispectral imaging(MSI), and designs a lightweight network model, named depthwise shuffle coordinate attention network (DSCANet) to assess and classify conveyor belts in three wear states. The multispectral images of the conveyor belt in the Huainan mining area were collected by the MSI system, with a wavelength range of 675–975 nm. The multispectral data at the wavelength with the largest imaging differences was screened as the input to the assessment model DSCANet. Compared with other widely used neural network models, the proposed DSCANet demonstrated the best performance, achieving a classification accuracy of 98.78 %, with floating point operations(FLOPs) of only 136.53M. The findings indicate the great efficacy of the MSI and DSCANet combination in assessing the conveyor belt wear, holding importance in reducing the risk of sudden failures and enhancing production efficiency.</p></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224012404\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012404","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

准确评估输送带磨损状态是衡量带式输送机安全性和可靠性的关键部分。因此,本文提出了一种基于多光谱成像(MSI)的输送带磨损精确检测方法,并设计了一种轻量级网络模型,命名为深度洗牌坐标注意力网络(DSCANet),对三种磨损状态下的输送带进行评估和分类。MSI 系统采集了淮南矿区输送带的多光谱图像,波长范围为 675-975 nm。筛选出成像差异最大的波长的多光谱数据作为评估模型 DSCANet 的输入。与其他广泛使用的神经网络模型相比,拟议的 DSCANet 表现最佳,分类准确率达到 98.78%,浮点运算(FLOPs)仅为 136.53M。研究结果表明,MSI 和 DSCANet 组合在评估输送带磨损方面具有极大的功效,在降低突发故障风险和提高生产效率方面具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A deep learning approach for accurate assessment of conveyor belt wear state based on multispectral imaging

Accurate assessment of the conveyor belt wear state is a crucial part of measuring belt conveyor safety and reliability. Therefore, this paper proposes an accurate detection approach for conveyor belt wear based on multispectral imaging(MSI), and designs a lightweight network model, named depthwise shuffle coordinate attention network (DSCANet) to assess and classify conveyor belts in three wear states. The multispectral images of the conveyor belt in the Huainan mining area were collected by the MSI system, with a wavelength range of 675–975 nm. The multispectral data at the wavelength with the largest imaging differences was screened as the input to the assessment model DSCANet. Compared with other widely used neural network models, the proposed DSCANet demonstrated the best performance, achieving a classification accuracy of 98.78 %, with floating point operations(FLOPs) of only 136.53M. The findings indicate the great efficacy of the MSI and DSCANet combination in assessing the conveyor belt wear, holding importance in reducing the risk of sudden failures and enhancing production efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
10.00%
发文量
1060
审稿时长
3.4 months
期刊介绍: Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication. The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas: •development in all types of lasers •developments in optoelectronic devices and photonics •developments in new photonics and optical concepts •developments in conventional optics, optical instruments and components •techniques of optical metrology, including interferometry and optical fibre sensors •LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow •applications of lasers to materials processing, optical NDT display (including holography) and optical communication •research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume) •developments in optical computing and optical information processing •developments in new optical materials •developments in new optical characterization methods and techniques •developments in quantum optics •developments in light assisted micro and nanofabrication methods and techniques •developments in nanophotonics and biophotonics •developments in imaging processing and systems
期刊最新文献
Control of photothermal liquid jets through microbubble Regulation: Fundamental mechanisms and Developing Strategies Multi-parameter reconstruction of interference harmonics by effective tuning combination selection and sampling boundary fitting Semantic ghost imaging based on semantic coding Enhanced beam quality of high-energy lasers utilizing fused silica as an all-solid-state SBS-PCM Efficient high-power 1.9 µm picosecond Raman laser in H2-filled hollow-core fiber without generation of rotational lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1