{"title":"板块翻转俯冲诱发的地幔上升流可解释西藏广泛的板块内火山活动","authors":"Vincent Strak, Kai Xue, Wouter P. Schellart","doi":"10.1038/s43247-024-01581-7","DOIUrl":null,"url":null,"abstract":"Subduction-induced mantle flow has a considerable geodynamic impact on Earth. It can deflect mantle plumes, transport geochemical signatures and produce upwellings that generate atypical intraplate volcanism. The mantle flow produced by slab rollover subduction, however, remains unstudied, yet it may have a comparable geodynamic significance. Here, we present analogue models of buoyancy-driven subduction in which we image, using a state-of-the-art Particle Image Velocimetry (PIV) technique, the three-dimensional mantle flow induced by two contrasting subduction styles: slab rollback (trench retreat) and slab rollover (trench advance). Our model results show that the advancing subduction mode develops a slab rollover geometry that generates a large-scale upwelling in a broad mantle wedge domain. Based on a comparison between the location of this upwelling and Cenozoic volcanics in Tibet, we propose that slab rollover subduction of the Tethyan and Indian slabs generated a comparably broad mantle upwelling, which drove widespread Cenozoic volcanism in Tibet. Intraplate volcanism inboard of subduction and collision zones, such as in Tibet during the Cenozoic, could be produced by reversed toroidal mantle flow and long-lived upwelling in subduction rollover settings, according to analogue subduction models.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":null,"pages":null},"PeriodicalIF":8.1000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01581-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Mantle upwelling induced by slab rollover subduction could explain widespread intraplate volcanism in Tibet\",\"authors\":\"Vincent Strak, Kai Xue, Wouter P. Schellart\",\"doi\":\"10.1038/s43247-024-01581-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Subduction-induced mantle flow has a considerable geodynamic impact on Earth. It can deflect mantle plumes, transport geochemical signatures and produce upwellings that generate atypical intraplate volcanism. The mantle flow produced by slab rollover subduction, however, remains unstudied, yet it may have a comparable geodynamic significance. Here, we present analogue models of buoyancy-driven subduction in which we image, using a state-of-the-art Particle Image Velocimetry (PIV) technique, the three-dimensional mantle flow induced by two contrasting subduction styles: slab rollback (trench retreat) and slab rollover (trench advance). Our model results show that the advancing subduction mode develops a slab rollover geometry that generates a large-scale upwelling in a broad mantle wedge domain. Based on a comparison between the location of this upwelling and Cenozoic volcanics in Tibet, we propose that slab rollover subduction of the Tethyan and Indian slabs generated a comparably broad mantle upwelling, which drove widespread Cenozoic volcanism in Tibet. Intraplate volcanism inboard of subduction and collision zones, such as in Tibet during the Cenozoic, could be produced by reversed toroidal mantle flow and long-lived upwelling in subduction rollover settings, according to analogue subduction models.\",\"PeriodicalId\":10530,\"journal\":{\"name\":\"Communications Earth & Environment\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43247-024-01581-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Earth & Environment\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.nature.com/articles/s43247-024-01581-7\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01581-7","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Mantle upwelling induced by slab rollover subduction could explain widespread intraplate volcanism in Tibet
Subduction-induced mantle flow has a considerable geodynamic impact on Earth. It can deflect mantle plumes, transport geochemical signatures and produce upwellings that generate atypical intraplate volcanism. The mantle flow produced by slab rollover subduction, however, remains unstudied, yet it may have a comparable geodynamic significance. Here, we present analogue models of buoyancy-driven subduction in which we image, using a state-of-the-art Particle Image Velocimetry (PIV) technique, the three-dimensional mantle flow induced by two contrasting subduction styles: slab rollback (trench retreat) and slab rollover (trench advance). Our model results show that the advancing subduction mode develops a slab rollover geometry that generates a large-scale upwelling in a broad mantle wedge domain. Based on a comparison between the location of this upwelling and Cenozoic volcanics in Tibet, we propose that slab rollover subduction of the Tethyan and Indian slabs generated a comparably broad mantle upwelling, which drove widespread Cenozoic volcanism in Tibet. Intraplate volcanism inboard of subduction and collision zones, such as in Tibet during the Cenozoic, could be produced by reversed toroidal mantle flow and long-lived upwelling in subduction rollover settings, according to analogue subduction models.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.