Rafael Guerra Roel, Daniel Pastor Galán, Gabriel Chávez-Cabello, César Francisco Ramírez-Peña, José Jorge Aranda Gómez, Gerardo Patiño Méndez, R. Giovanny Nova, Alejandro Rodríguez-Parra, Roberto Stanley Molina Garza
{"title":"东方马德雷山脉新生带:墨西哥东北部纳萨斯省的古地磁学","authors":"Rafael Guerra Roel, Daniel Pastor Galán, Gabriel Chávez-Cabello, César Francisco Ramírez-Peña, José Jorge Aranda Gómez, Gerardo Patiño Méndez, R. Giovanny Nova, Alejandro Rodríguez-Parra, Roberto Stanley Molina Garza","doi":"10.1029/2024JB029239","DOIUrl":null,"url":null,"abstract":"<p>Curved mountain belts are spectacular natural features that contain crucial 3D information about the tectonic evolution of orogenic systems in the absence of other kinematic markers. The Mesozoic units exposed in the Mexican Fold and Thrust Belt in northeastern Mexico show a striking curvature, whose kinematic history has not been studied. The existing tectonic models of the region simply assumed the shape of the tectonic units as an inherent feature to the orogen. We investigated the kinematic history of this curvature through paleomagnetism and rock magnetism analyses, coupled with an exhaustive review of available published literature. The studied data sets indicate a protracted history of (re)magnetizations that occurred during the Late Jurassic-Paleocene times at least during the Late Jurassic, Cretaceous and early Eocene. More significantly, they show significant counterclockwise rotations in the northern flank of the curvature and moderate clockwise vertical axis rotations along its southern flank. This data set suggests that the Sierra Madre Oriental was a linear belt that experienced oroclinal bending or buckling during the Cretaceous to early Eocene period (120–50 Ma).</p>","PeriodicalId":15864,"journal":{"name":"Journal of Geophysical Research: Solid Earth","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB029239","citationCount":"0","resultStr":"{\"title\":\"The Sierra Madre Oriental Orocline: Paleomagnetism of the Nazas Province in NE Mexico\",\"authors\":\"Rafael Guerra Roel, Daniel Pastor Galán, Gabriel Chávez-Cabello, César Francisco Ramírez-Peña, José Jorge Aranda Gómez, Gerardo Patiño Méndez, R. Giovanny Nova, Alejandro Rodríguez-Parra, Roberto Stanley Molina Garza\",\"doi\":\"10.1029/2024JB029239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Curved mountain belts are spectacular natural features that contain crucial 3D information about the tectonic evolution of orogenic systems in the absence of other kinematic markers. The Mesozoic units exposed in the Mexican Fold and Thrust Belt in northeastern Mexico show a striking curvature, whose kinematic history has not been studied. The existing tectonic models of the region simply assumed the shape of the tectonic units as an inherent feature to the orogen. We investigated the kinematic history of this curvature through paleomagnetism and rock magnetism analyses, coupled with an exhaustive review of available published literature. The studied data sets indicate a protracted history of (re)magnetizations that occurred during the Late Jurassic-Paleocene times at least during the Late Jurassic, Cretaceous and early Eocene. More significantly, they show significant counterclockwise rotations in the northern flank of the curvature and moderate clockwise vertical axis rotations along its southern flank. This data set suggests that the Sierra Madre Oriental was a linear belt that experienced oroclinal bending or buckling during the Cretaceous to early Eocene period (120–50 Ma).</p>\",\"PeriodicalId\":15864,\"journal\":{\"name\":\"Journal of Geophysical Research: Solid Earth\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JB029239\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Solid Earth\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029239\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Solid Earth","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JB029239","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The Sierra Madre Oriental Orocline: Paleomagnetism of the Nazas Province in NE Mexico
Curved mountain belts are spectacular natural features that contain crucial 3D information about the tectonic evolution of orogenic systems in the absence of other kinematic markers. The Mesozoic units exposed in the Mexican Fold and Thrust Belt in northeastern Mexico show a striking curvature, whose kinematic history has not been studied. The existing tectonic models of the region simply assumed the shape of the tectonic units as an inherent feature to the orogen. We investigated the kinematic history of this curvature through paleomagnetism and rock magnetism analyses, coupled with an exhaustive review of available published literature. The studied data sets indicate a protracted history of (re)magnetizations that occurred during the Late Jurassic-Paleocene times at least during the Late Jurassic, Cretaceous and early Eocene. More significantly, they show significant counterclockwise rotations in the northern flank of the curvature and moderate clockwise vertical axis rotations along its southern flank. This data set suggests that the Sierra Madre Oriental was a linear belt that experienced oroclinal bending or buckling during the Cretaceous to early Eocene period (120–50 Ma).
期刊介绍:
The Journal of Geophysical Research: Solid Earth serves as the premier publication for the breadth of solid Earth geophysics including (in alphabetical order): electromagnetic methods; exploration geophysics; geodesy and gravity; geodynamics, rheology, and plate kinematics; geomagnetism and paleomagnetism; hydrogeophysics; Instruments, techniques, and models; solid Earth interactions with the cryosphere, atmosphere, oceans, and climate; marine geology and geophysics; natural and anthropogenic hazards; near surface geophysics; petrology, geochemistry, and mineralogy; planet Earth physics and chemistry; rock mechanics and deformation; seismology; tectonophysics; and volcanology.
JGR: Solid Earth has long distinguished itself as the venue for publication of Research Articles backed solidly by data and as well as presenting theoretical and numerical developments with broad applications. Research Articles published in JGR: Solid Earth have had long-term impacts in their fields.
JGR: Solid Earth provides a venue for special issues and special themes based on conferences, workshops, and community initiatives. JGR: Solid Earth also publishes Commentaries on research and emerging trends in the field; these are commissioned by the editors, and suggestion are welcome.