估算火星沙丘沙的粒度:基于免费软件的方法及初步结果

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Earth and Space Science Pub Date : 2024-09-16 DOI:10.1029/2024EA003697
D. M. Burr, V. N. H. Nguyen, T. M.-G. Gibson, T. Chinchkhede
{"title":"估算火星沙丘沙的粒度:基于免费软件的方法及初步结果","authors":"D. M. Burr,&nbsp;V. N. H. Nguyen,&nbsp;T. M.-G. Gibson,&nbsp;T. Chinchkhede","doi":"10.1029/2024EA003697","DOIUrl":null,"url":null,"abstract":"<p>Grain sizes of Martian sand dunes are critical sedimentological data on sand provenance and transport pathways. Thermal inertia values are used to characterize the grain sizes of dune sand. Most early characterizations involved single dune fields. Recent work based on global data sets has provided more wide-spread dune sand locations, though these data sets include the non-sandy interdune areas. To provide a more accurate grain size characterization, we leverage a global thermal inertia data set, a global dune database and a global imaging mosaic to develop a freeware-based methodology for deriving grain sizes. This methodology involves delineation of sand-only areas within dune fields and collection of thermal inertia values from those areas. We consider a unimodal histogram of values with a mode &lt;∼350 thermal inertia units (J m<sup>−2</sup> K<sup>−1</sup> s<sup>−1/2</sup>) to imply an effective exclusion of non-sand surfaces. Application of this methodology to dune fields for which thermal inertia values have been previous derived shows our results fall within the envelope of those values. We apply our methodology to tropical dune fields on Mars for which Dust Cover Index data imply dust-free surfaces. Conversion of these thermal inertia values to sand grain sizes yields a range of sand classifications of fine sand to granules. Comparison of sand size classifications with geographic location shows grain size ranges that are distinctive by location, consistent with local sourcing. This work points toward geographically diverse sand formation mechanisms yielding diverse grain sizes, while providing a freeware-based and thus widely accessible method for expanding the derivation of these critical data.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"11 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003697","citationCount":"0","resultStr":"{\"title\":\"Estimating Grain Sizes of Martian Dune Sand: A Freeware-Based Methodology With Initial Results\",\"authors\":\"D. M. Burr,&nbsp;V. N. H. Nguyen,&nbsp;T. M.-G. Gibson,&nbsp;T. Chinchkhede\",\"doi\":\"10.1029/2024EA003697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Grain sizes of Martian sand dunes are critical sedimentological data on sand provenance and transport pathways. Thermal inertia values are used to characterize the grain sizes of dune sand. Most early characterizations involved single dune fields. Recent work based on global data sets has provided more wide-spread dune sand locations, though these data sets include the non-sandy interdune areas. To provide a more accurate grain size characterization, we leverage a global thermal inertia data set, a global dune database and a global imaging mosaic to develop a freeware-based methodology for deriving grain sizes. This methodology involves delineation of sand-only areas within dune fields and collection of thermal inertia values from those areas. We consider a unimodal histogram of values with a mode &lt;∼350 thermal inertia units (J m<sup>−2</sup> K<sup>−1</sup> s<sup>−1/2</sup>) to imply an effective exclusion of non-sand surfaces. Application of this methodology to dune fields for which thermal inertia values have been previous derived shows our results fall within the envelope of those values. We apply our methodology to tropical dune fields on Mars for which Dust Cover Index data imply dust-free surfaces. Conversion of these thermal inertia values to sand grain sizes yields a range of sand classifications of fine sand to granules. Comparison of sand size classifications with geographic location shows grain size ranges that are distinctive by location, consistent with local sourcing. This work points toward geographically diverse sand formation mechanisms yielding diverse grain sizes, while providing a freeware-based and thus widely accessible method for expanding the derivation of these critical data.</p>\",\"PeriodicalId\":54286,\"journal\":{\"name\":\"Earth and Space Science\",\"volume\":\"11 9\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003697\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003697\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003697","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

火星沙丘的粒度是有关沙子来源和迁移路径的重要沉积学数据。热惯性值用于描述沙丘沙粒的粒度。早期的特征描述大多涉及单个沙丘区域。最近基于全球数据集的工作提供了更广泛的沙丘砂位置,尽管这些数据集包括非沙丘间区域。为了提供更准确的粒度表征,我们利用全球热惯性数据集、全球沙丘数据库和全球成像镶嵌图,开发了一种基于免费软件的粒度推导方法。该方法包括在沙丘区域内划分纯沙区域,并收集这些区域的热惯性值。我们认为热惯性单位(J m-2 K-1 s-1/2)模式为350的单模态直方图意味着有效排除了非沙表面。将这一方法应用于之前已经得出热惯性值的沙丘区域,结果显示我们的结果在这些值的范围之内。我们将这一方法应用于火星上的热带沙丘区域,其尘埃覆盖指数数据意味着这些沙丘表面是无尘的。将这些热惯性值转换成沙粒大小,可以得到从细沙到颗粒的一系列沙粒分类。将沙粒大小分类与地理位置进行比较后发现,不同地点的沙粒大小范围各不相同,这与当地的沙粒来源是一致的。这项工作表明,不同地理位置的沙子形成机制产生了不同的粒度,同时提供了一种基于免费软件的方法,因此可广泛用于扩展这些关键数据的推导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimating Grain Sizes of Martian Dune Sand: A Freeware-Based Methodology With Initial Results

Grain sizes of Martian sand dunes are critical sedimentological data on sand provenance and transport pathways. Thermal inertia values are used to characterize the grain sizes of dune sand. Most early characterizations involved single dune fields. Recent work based on global data sets has provided more wide-spread dune sand locations, though these data sets include the non-sandy interdune areas. To provide a more accurate grain size characterization, we leverage a global thermal inertia data set, a global dune database and a global imaging mosaic to develop a freeware-based methodology for deriving grain sizes. This methodology involves delineation of sand-only areas within dune fields and collection of thermal inertia values from those areas. We consider a unimodal histogram of values with a mode <∼350 thermal inertia units (J m−2 K−1 s−1/2) to imply an effective exclusion of non-sand surfaces. Application of this methodology to dune fields for which thermal inertia values have been previous derived shows our results fall within the envelope of those values. We apply our methodology to tropical dune fields on Mars for which Dust Cover Index data imply dust-free surfaces. Conversion of these thermal inertia values to sand grain sizes yields a range of sand classifications of fine sand to granules. Comparison of sand size classifications with geographic location shows grain size ranges that are distinctive by location, consistent with local sourcing. This work points toward geographically diverse sand formation mechanisms yielding diverse grain sizes, while providing a freeware-based and thus widely accessible method for expanding the derivation of these critical data.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
期刊最新文献
Can Large Strains Be Accommodated by Small Faults: “Brittle Flow of Rocks” Revised 3-D Subsurface Geophysical Modeling of the Charity Shoal Structure: A Probable Late Proterozoic-Early Paleozoic Simple Impact Structure in Eastern Lake Ontario Study on Acoustic Variability Affected by Upper Ocean Dynamics in South Eastern Arabian Sea Monthly Prediction on Summer Extreme Precipitation With a Deep Learning Approach: Experiments Over the Mid-To-Lower Reaches of the Yangtze River A New Generation of Hydrological Condition Simulator Employing Physical Models and Satellite-Based Meteorological Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1