过量表达白细胞介素-10的巨噬细胞能靶向预防动脉粥样硬化:斑块形成的消退和坏死核心的减少

IF 6.1 2区 医学 Q1 ENGINEERING, BIOMEDICAL Bioengineering & Translational Medicine Pub Date : 2024-09-17 DOI:10.1002/btm2.10717
Mingyi Wang, Shanshan Zhou, Yingyun Hu, Wei Tong, Hao Zhou, Mingrui Ma, Xingxuan Cai, Zhengbin Zhang, Luo Zhang, Yundai Chen
{"title":"过量表达白细胞介素-10的巨噬细胞能靶向预防动脉粥样硬化:斑块形成的消退和坏死核心的减少","authors":"Mingyi Wang, Shanshan Zhou, Yingyun Hu, Wei Tong, Hao Zhou, Mingrui Ma, Xingxuan Cai, Zhengbin Zhang, Luo Zhang, Yundai Chen","doi":"10.1002/btm2.10717","DOIUrl":null,"url":null,"abstract":"Atherosclerosis, a slowly progressing inflammatory disease, is characterized by the presence of monocyte‐derived macrophages. Interventions targeting the inflammatory characteristics of atherosclerosis hold promising potential. Although interleukin (IL)‐10 is widely acknowledged for its anti‐inflammatory effects, systemic administration of IL‐10 has limitations due to its short half‐life and significant systemic side effects. In this study, we aimed to investigate the effectiveness of an approach designed to overexpress IL‐10 in macrophages and subsequently introduce these genetically modified cells into ApoE<jats:sup>−/−</jats:sup> mice to promote atherosclerosis regression. We engineered RAW264.7 cells to overexpress IL‐10 (referred to as IL‐10M) using lentivirus vectors. The IL‐10M exhibited robust IL‐10 secretion, maintained phagocytic function, improved mitochondrial membrane potentials, reduced superoxide production and showed a tendency toward the M2 phenotype when exposed to inflammatory stimuli. IL‐10M can selectively target plaques in ApoE<jats:sup>−/−</jats:sup> mice and has the potential to reduce plaque area and necrotic core at both early and late stages of plaque progression. Moreover, there was a significant reduction in MMP9, a biomarker associated with plaque rupture, in IL‐10M‐treated plaques from both the early and late intervention groups. Additionally, the administration of IL‐10M showed no obvious side effects. This study serves as proof that cell therapy based on anti‐inflammatory macrophages might be a promising strategy for the intervention of atherosclerosis.","PeriodicalId":9263,"journal":{"name":"Bioengineering & Translational Medicine","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Macrophages overexpressing interleukin‐10 target and prevent atherosclerosis: Regression of plaque formation and reduction in necrotic core\",\"authors\":\"Mingyi Wang, Shanshan Zhou, Yingyun Hu, Wei Tong, Hao Zhou, Mingrui Ma, Xingxuan Cai, Zhengbin Zhang, Luo Zhang, Yundai Chen\",\"doi\":\"10.1002/btm2.10717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atherosclerosis, a slowly progressing inflammatory disease, is characterized by the presence of monocyte‐derived macrophages. Interventions targeting the inflammatory characteristics of atherosclerosis hold promising potential. Although interleukin (IL)‐10 is widely acknowledged for its anti‐inflammatory effects, systemic administration of IL‐10 has limitations due to its short half‐life and significant systemic side effects. In this study, we aimed to investigate the effectiveness of an approach designed to overexpress IL‐10 in macrophages and subsequently introduce these genetically modified cells into ApoE<jats:sup>−/−</jats:sup> mice to promote atherosclerosis regression. We engineered RAW264.7 cells to overexpress IL‐10 (referred to as IL‐10M) using lentivirus vectors. The IL‐10M exhibited robust IL‐10 secretion, maintained phagocytic function, improved mitochondrial membrane potentials, reduced superoxide production and showed a tendency toward the M2 phenotype when exposed to inflammatory stimuli. IL‐10M can selectively target plaques in ApoE<jats:sup>−/−</jats:sup> mice and has the potential to reduce plaque area and necrotic core at both early and late stages of plaque progression. Moreover, there was a significant reduction in MMP9, a biomarker associated with plaque rupture, in IL‐10M‐treated plaques from both the early and late intervention groups. Additionally, the administration of IL‐10M showed no obvious side effects. This study serves as proof that cell therapy based on anti‐inflammatory macrophages might be a promising strategy for the intervention of atherosclerosis.\",\"PeriodicalId\":9263,\"journal\":{\"name\":\"Bioengineering & Translational Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering & Translational Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btm2.10717\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering & Translational Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btm2.10717","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

动脉粥样硬化是一种进展缓慢的炎症性疾病,其特点是存在源自单核细胞的巨噬细胞。针对动脉粥样硬化炎症特征的干预措施具有广阔的前景。虽然白细胞介素(IL)-10的抗炎作用已得到广泛认可,但由于其半衰期短且具有明显的全身副作用,因此全身给药具有局限性。在本研究中,我们的目的是研究在巨噬细胞中过表达 IL-10,并随后将这些转基因细胞导入载脂蛋白E-/-小鼠体内以促进动脉粥样硬化消退的方法的有效性。我们利用慢病毒载体改造了 RAW264.7 细胞,使其过表达 IL-10(简称 IL-10M)。IL-10M表现出强劲的IL-10分泌,维持吞噬功能,改善线粒体膜电位,减少超氧化物的产生,并在受到炎症刺激时表现出M2表型倾向。IL-10M可选择性地靶向载脂蛋白E-/-小鼠的斑块,并有可能在斑块进展的早期和晚期减少斑块面积和坏死核心。此外,在早期和晚期干预组中,经IL-10M处理的斑块中与斑块破裂相关的生物标志物MMP9均有明显减少。此外,服用IL-10M无明显副作用。这项研究证明,基于抗炎巨噬细胞的细胞疗法可能是一种很有前景的动脉粥样硬化干预策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Macrophages overexpressing interleukin‐10 target and prevent atherosclerosis: Regression of plaque formation and reduction in necrotic core
Atherosclerosis, a slowly progressing inflammatory disease, is characterized by the presence of monocyte‐derived macrophages. Interventions targeting the inflammatory characteristics of atherosclerosis hold promising potential. Although interleukin (IL)‐10 is widely acknowledged for its anti‐inflammatory effects, systemic administration of IL‐10 has limitations due to its short half‐life and significant systemic side effects. In this study, we aimed to investigate the effectiveness of an approach designed to overexpress IL‐10 in macrophages and subsequently introduce these genetically modified cells into ApoE−/− mice to promote atherosclerosis regression. We engineered RAW264.7 cells to overexpress IL‐10 (referred to as IL‐10M) using lentivirus vectors. The IL‐10M exhibited robust IL‐10 secretion, maintained phagocytic function, improved mitochondrial membrane potentials, reduced superoxide production and showed a tendency toward the M2 phenotype when exposed to inflammatory stimuli. IL‐10M can selectively target plaques in ApoE−/− mice and has the potential to reduce plaque area and necrotic core at both early and late stages of plaque progression. Moreover, there was a significant reduction in MMP9, a biomarker associated with plaque rupture, in IL‐10M‐treated plaques from both the early and late intervention groups. Additionally, the administration of IL‐10M showed no obvious side effects. This study serves as proof that cell therapy based on anti‐inflammatory macrophages might be a promising strategy for the intervention of atherosclerosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering & Translational Medicine
Bioengineering & Translational Medicine Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
8.40
自引率
4.10%
发文量
150
审稿时长
12 weeks
期刊介绍: Bioengineering & Translational Medicine, an official, peer-reviewed online open-access journal of the American Institute of Chemical Engineers (AIChE) and the Society for Biological Engineering (SBE), focuses on how chemical and biological engineering approaches drive innovative technologies and solutions that impact clinical practice and commercial healthcare products.
期刊最新文献
Fecal microbiota transplantation for the treatment of intestinal and extra‐intestinal diseases: Mechanism basis, clinical application, and potential prospect ColMA‐based bioprinted 3D scaffold allowed to study tenogenic events in human tendon stem cells Facile minocycline deployment in gingiva using a dissolvable microneedle patch for the adjunctive treatment of periodontal disease Temperature‐sensitive sodium beta‐glycerophosphate/chitosan hydrogel loaded with all‐trans retinoic acid regulates Pin1 to inhibit the formation of spinal cord injury‐induced rat glial scar Recent regulatory developments in EU Medical Device Regulation and their impact on biomaterials translation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1