熔盐调制钾氮碳以打破光催化整体水分离的动力学瓶颈并减少对环境的影响

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-09-18 DOI:10.1021/acsnano.4c08309
Jing Wang, Zheng Qing Huang, Longhui Nie
{"title":"熔盐调制钾氮碳以打破光催化整体水分离的动力学瓶颈并减少对环境的影响","authors":"Jing Wang, Zheng Qing Huang, Longhui Nie","doi":"10.1021/acsnano.4c08309","DOIUrl":null,"url":null,"abstract":"Sluggish interfacial water dissociation and the O<sub>2</sub> evolution reaction (OER) kinetics are the main obstacles that limit the photocatalytic overall water-splitting performance. A molten salt modulation of potassium–nitrogen–carbon is herein demonstrated as the formation of highly crystalline potassium-doped poly(triazine imide) (KPTI). The in situ X-ray diffraction patterns and theoretical calculation show that the KCl melt can significantly reduce the free energy for the polycondensation of triazine building blocks owing to the formation of a kinetically stable KPTI. Benefiting from the presence of potassium–carbon–nitrogen moiety, the catalyst not only weakens the excitonic confinement to improve the separation efficiency of photogenerated charge carriers but also enhances the stability of carbon sites by suppressing the undesired C═O formation. Moreover, KPTI accelerates water dissociation by forming interfacial K·H<sub>2</sub>O clusters with an ordered structure, which supplies sufficient protons for the H<sub>2</sub> evolution reaction and lowers the energy barrier to enhance the kinetics of OER. Therefore, a stable photocatalytic overall water-splitting performance can be achieved over KPTI with a stoichiometric generation of products (H<sub>2</sub> and O<sub>2</sub>). Life cycle assessment shows that a carbon-neutral scenario can be achieved on KPTI production in the near term with an increase in green power in the electricity grid.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":null,"pages":null},"PeriodicalIF":15.8000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Molten Salt Modulation of Potassium–Nitrogen–Carbon for the Breaking Kinetics Bottleneck of Photocatalytic Overall Water Splitting and Environmental Impact Reduction\",\"authors\":\"Jing Wang, Zheng Qing Huang, Longhui Nie\",\"doi\":\"10.1021/acsnano.4c08309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sluggish interfacial water dissociation and the O<sub>2</sub> evolution reaction (OER) kinetics are the main obstacles that limit the photocatalytic overall water-splitting performance. A molten salt modulation of potassium–nitrogen–carbon is herein demonstrated as the formation of highly crystalline potassium-doped poly(triazine imide) (KPTI). The in situ X-ray diffraction patterns and theoretical calculation show that the KCl melt can significantly reduce the free energy for the polycondensation of triazine building blocks owing to the formation of a kinetically stable KPTI. Benefiting from the presence of potassium–carbon–nitrogen moiety, the catalyst not only weakens the excitonic confinement to improve the separation efficiency of photogenerated charge carriers but also enhances the stability of carbon sites by suppressing the undesired C═O formation. Moreover, KPTI accelerates water dissociation by forming interfacial K·H<sub>2</sub>O clusters with an ordered structure, which supplies sufficient protons for the H<sub>2</sub> evolution reaction and lowers the energy barrier to enhance the kinetics of OER. Therefore, a stable photocatalytic overall water-splitting performance can be achieved over KPTI with a stoichiometric generation of products (H<sub>2</sub> and O<sub>2</sub>). Life cycle assessment shows that a carbon-neutral scenario can be achieved on KPTI production in the near term with an increase in green power in the electricity grid.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c08309\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c08309","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

缓慢的界面水解离和 O2 演化反应(OER)动力学是限制光催化整体水分离性能的主要障碍。本文展示了钾-氮-碳的熔盐调制,形成了高结晶的钾掺杂聚(三嗪亚胺)(KPTI)。现场 X 射线衍射图样和理论计算表明,由于形成了动力学稳定的 KPTI,氯化钾熔体可显著降低三嗪结构单元缩聚的自由能。得益于钾-碳-氮分子的存在,催化剂不仅能削弱激子束缚,提高光生电荷载流子的分离效率,还能通过抑制不希望的 C═O 的形成来增强碳位点的稳定性。此外,KPTI 还能通过形成具有有序结构的界面 K-H2O 簇来加速水的解离,从而为 H2 演化反应提供充足的质子,并降低能垒以增强 OER 的动力学。因此,在 KPTI 上可以实现稳定的光催化整体水分离性能,并按化学计量生成产物(H2 和 O2)。生命周期评估表明,随着电网中绿色电力的增加,KPTI 生产可在短期内实现碳中和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Molten Salt Modulation of Potassium–Nitrogen–Carbon for the Breaking Kinetics Bottleneck of Photocatalytic Overall Water Splitting and Environmental Impact Reduction
Sluggish interfacial water dissociation and the O2 evolution reaction (OER) kinetics are the main obstacles that limit the photocatalytic overall water-splitting performance. A molten salt modulation of potassium–nitrogen–carbon is herein demonstrated as the formation of highly crystalline potassium-doped poly(triazine imide) (KPTI). The in situ X-ray diffraction patterns and theoretical calculation show that the KCl melt can significantly reduce the free energy for the polycondensation of triazine building blocks owing to the formation of a kinetically stable KPTI. Benefiting from the presence of potassium–carbon–nitrogen moiety, the catalyst not only weakens the excitonic confinement to improve the separation efficiency of photogenerated charge carriers but also enhances the stability of carbon sites by suppressing the undesired C═O formation. Moreover, KPTI accelerates water dissociation by forming interfacial K·H2O clusters with an ordered structure, which supplies sufficient protons for the H2 evolution reaction and lowers the energy barrier to enhance the kinetics of OER. Therefore, a stable photocatalytic overall water-splitting performance can be achieved over KPTI with a stoichiometric generation of products (H2 and O2). Life cycle assessment shows that a carbon-neutral scenario can be achieved on KPTI production in the near term with an increase in green power in the electricity grid.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Liquid Metal Oxide-Assisted Integration of High-k Dielectrics and Metal Contacts for Two-Dimensional Electronics High-Density Atomically Dispersed Metals Activate Adjacent Nitrogen/Carbon Sites for Efficient Ammonia Electrosynthesis from Nitrate Molten Salt Modulation of Potassium–Nitrogen–Carbon for the Breaking Kinetics Bottleneck of Photocatalytic Overall Water Splitting and Environmental Impact Reduction Issue Publication Information Issue Editorial Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1