{"title":"核酸镰刀菌中黄酮铁蛋白的新电子传递链将丁酰-CoA 氧化与 O2 还原耦合在一起","authors":"Liam T. Bystrom, and , Kirsten R. Wolthers*, ","doi":"10.1021/acs.biochem.4c0027910.1021/acs.biochem.4c00279","DOIUrl":null,"url":null,"abstract":"<p ><i>Fusobacterium nucleatum</i>, a Gram-negative obligate anaerobe, is common to the oral microbiota, but the species is known to infect other sites of the body where it is associated with a range of pathologies. At present, little is known about the mechanisms by which <i>F. nucleatum</i> mitigates against oxidative and nitrosative stress. Inspection of the <i>F. nucleatum</i> subsp. <i>polymorphum</i> ATCC 10953 genome reveals that it encodes a flavodiiron protein (FDP; FNP2073) that is known in other organisms to reduce NO to N<sub>2</sub>O and/or O<sub>2</sub> to H<sub>2</sub>O. FNP2073 is dicistronic with a gene encoding a multicomponent enzyme termed BCR for <u>b</u>utyryl-<u>C</u>oA <u>r</u>eductase. BCR is composed of a butyryl-CoA dehydrogenase domain (BCD), the C-terminal domain of the α-subunit of the electron-transfer flavoprotein (Etfα), and a rubredoxin domain. We show that BCR and the FDP form an α<sub>4</sub>β<sub>4</sub> heterotetramic complex and use butyryl-CoA to selectively reduce O<sub>2</sub> to H<sub>2</sub>O. The FAD associated with the Etfα domain (α-FAD) forms red anionic semiquinone (FAD<sup>•–</sup>), whereas the FAD present in the BCD domain (δ-FAD) forms the blue-neutral semiquinone (FADH<sup>•</sup>), indicating that both cofactors participate in one-electron transfers. This was confirmed in stopped-flow studies where the reduction of oxidized BCR with an excess of butyryl-CoA resulted in rapid (<1.6 ms) interflavin electron transfer evidenced by the formation of the FAD<sup>•–</sup>. Analysis of bacterial genomes revealed that the dicistron is present in obligate anaerobic gut bacteria considered to be beneficial by virtue of their ability to produce butyrate. Thus, BCR-FDP may help to maintain anaerobiosis in the colon.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New Electron-Transfer Chain to a Flavodiiron Protein in Fusobacterium nucleatum Couples Butyryl-CoA Oxidation to O2 Reduction\",\"authors\":\"Liam T. Bystrom, and , Kirsten R. Wolthers*, \",\"doi\":\"10.1021/acs.biochem.4c0027910.1021/acs.biochem.4c00279\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p ><i>Fusobacterium nucleatum</i>, a Gram-negative obligate anaerobe, is common to the oral microbiota, but the species is known to infect other sites of the body where it is associated with a range of pathologies. At present, little is known about the mechanisms by which <i>F. nucleatum</i> mitigates against oxidative and nitrosative stress. Inspection of the <i>F. nucleatum</i> subsp. <i>polymorphum</i> ATCC 10953 genome reveals that it encodes a flavodiiron protein (FDP; FNP2073) that is known in other organisms to reduce NO to N<sub>2</sub>O and/or O<sub>2</sub> to H<sub>2</sub>O. FNP2073 is dicistronic with a gene encoding a multicomponent enzyme termed BCR for <u>b</u>utyryl-<u>C</u>oA <u>r</u>eductase. BCR is composed of a butyryl-CoA dehydrogenase domain (BCD), the C-terminal domain of the α-subunit of the electron-transfer flavoprotein (Etfα), and a rubredoxin domain. We show that BCR and the FDP form an α<sub>4</sub>β<sub>4</sub> heterotetramic complex and use butyryl-CoA to selectively reduce O<sub>2</sub> to H<sub>2</sub>O. The FAD associated with the Etfα domain (α-FAD) forms red anionic semiquinone (FAD<sup>•–</sup>), whereas the FAD present in the BCD domain (δ-FAD) forms the blue-neutral semiquinone (FADH<sup>•</sup>), indicating that both cofactors participate in one-electron transfers. This was confirmed in stopped-flow studies where the reduction of oxidized BCR with an excess of butyryl-CoA resulted in rapid (<1.6 ms) interflavin electron transfer evidenced by the formation of the FAD<sup>•–</sup>. Analysis of bacterial genomes revealed that the dicistron is present in obligate anaerobic gut bacteria considered to be beneficial by virtue of their ability to produce butyrate. Thus, BCR-FDP may help to maintain anaerobiosis in the colon.</p>\",\"PeriodicalId\":28,\"journal\":{\"name\":\"Biochemistry Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemistry Biochemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00279\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.biochem.4c00279","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
核团镰刀菌是一种革兰氏阴性的强制性厌氧菌,常见于口腔微生物群,但已知该物种也会感染身体的其他部位,并与一系列病症有关。目前,人们对核酸酵母菌减轻氧化和亚硝酸应激的机制知之甚少。对 F. nucleatum subsp. polymorphum ATCC 10953 基因组的检查发现,它编码一种黄二铁蛋白(FDP;FNP2073),已知这种蛋白在其他生物体中能将 NO 还原成 N2O 和/或将 O2 还原成 H2O。FNP2073 与编码丁酰-CoA 还原酶(BCR)的多组分酶的基因具有双链。BCR 由丁烯酰-CoA 脱氢酶结构域(BCD)、电子传递黄素蛋白(Etfα)α 亚基的 C 端结构域和红赤霉素结构域组成。我们的研究表明,BCR 和 FDP 形成了一个 α4β4 杂四聚体复合物,并利用丁酰-CoA 选择性地将 O2 还原成 H2O。与 Etfα 结构域相关的 FAD(α-FAD)形成红色阴离子半醌(FAD--),而 BCD 结构域中的 FAD(δ-FAD)形成蓝色中性半醌(FADH-),这表明这两种辅助因子都参与了单电子转移。这一点在停流研究中得到了证实,用过量丁酰-CoA还原氧化的 BCR,会导致快速(1.6 毫秒)的黄素间电子转移,FAD-的形成就是证明。对细菌基因组的分析表明,该双核苷酸存在于必须厌氧的肠道细菌中,这些细菌因能产生丁酸而被认为是有益的。因此,BCR-FDP 可能有助于维持结肠中的厌氧状态。
New Electron-Transfer Chain to a Flavodiiron Protein in Fusobacterium nucleatum Couples Butyryl-CoA Oxidation to O2 Reduction
Fusobacterium nucleatum, a Gram-negative obligate anaerobe, is common to the oral microbiota, but the species is known to infect other sites of the body where it is associated with a range of pathologies. At present, little is known about the mechanisms by which F. nucleatum mitigates against oxidative and nitrosative stress. Inspection of the F. nucleatum subsp. polymorphum ATCC 10953 genome reveals that it encodes a flavodiiron protein (FDP; FNP2073) that is known in other organisms to reduce NO to N2O and/or O2 to H2O. FNP2073 is dicistronic with a gene encoding a multicomponent enzyme termed BCR for butyryl-CoA reductase. BCR is composed of a butyryl-CoA dehydrogenase domain (BCD), the C-terminal domain of the α-subunit of the electron-transfer flavoprotein (Etfα), and a rubredoxin domain. We show that BCR and the FDP form an α4β4 heterotetramic complex and use butyryl-CoA to selectively reduce O2 to H2O. The FAD associated with the Etfα domain (α-FAD) forms red anionic semiquinone (FAD•–), whereas the FAD present in the BCD domain (δ-FAD) forms the blue-neutral semiquinone (FADH•), indicating that both cofactors participate in one-electron transfers. This was confirmed in stopped-flow studies where the reduction of oxidized BCR with an excess of butyryl-CoA resulted in rapid (<1.6 ms) interflavin electron transfer evidenced by the formation of the FAD•–. Analysis of bacterial genomes revealed that the dicistron is present in obligate anaerobic gut bacteria considered to be beneficial by virtue of their ability to produce butyrate. Thus, BCR-FDP may help to maintain anaerobiosis in the colon.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.