冷却速度对铜铍合金中 β 相共晶转变的影响

IF 6.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Research and Technology-Jmr&t Pub Date : 2024-09-12 DOI:10.1016/j.jmrt.2024.09.071
Xiaoyu Jiang , Qiuhua Guo , Wei Chen , Linhan Li , Yanbin Jiang , Can Wang , Daibo Zhu , Shuhui Cui , Mingda Han , Zhou Li
{"title":"冷却速度对铜铍合金中 β 相共晶转变的影响","authors":"Xiaoyu Jiang ,&nbsp;Qiuhua Guo ,&nbsp;Wei Chen ,&nbsp;Linhan Li ,&nbsp;Yanbin Jiang ,&nbsp;Can Wang ,&nbsp;Daibo Zhu ,&nbsp;Shuhui Cui ,&nbsp;Mingda Han ,&nbsp;Zhou Li","doi":"10.1016/j.jmrt.2024.09.071","DOIUrl":null,"url":null,"abstract":"<div><p>The copper (Cu)-beryllium (Be) alloy is a critical material for high-performance photomultiplier cathodes. The microstructure evolution of the β phase in the Cu-2.8Be alloy subjected to cooling rate ranging from 0.5 to 80 °C/s after heat treatment. The non-isothermal phase transformation kinetics equation of the alloy was derived. At a cooling rate of 0.5 °C/s, the β phase completely transformed into the α phase and γ phase through a eutectoid reaction (β → α + γ). The γ phase preferentially precipitates at locations with higher free energy, such as grain boundaries and defects in the parent phase. The orientation relationship between the α phase and the γ phase follows the Kurdjumov-Sachs (K–S) relationship (<span><math><mrow><msub><mrow><mo>[</mo><mn>110</mn><mo>]</mo></mrow><mi>α</mi></msub><mo>∥</mo><msub><mrow><mo>[</mo><mn>111</mn><mo>]</mo></mrow><mi>γ</mi></msub></mrow></math></span>; <span><math><mrow><msub><mrow><mo>(</mo><mrow><mn>1</mn><mover><mn>1</mn><mo>‾</mo></mover><mover><mn>1</mn><mo>‾</mo></mover></mrow><mo>)</mo></mrow><mi>α</mi></msub><mo>∥</mo><msub><mrow><mo>(</mo><mrow><mn>0</mn><mover><mn>1</mn><mo>‾</mo></mover><mn>1</mn></mrow><mo>)</mo></mrow><mi>γ</mi></msub></mrow></math></span>), and the α phase nucleates and grows with a twin relationship to the Cu matrix. As the cooling rate increases, the transformation fraction of the β phase decreases. The critical cooling rate at which the β phase eutectoid reaction is completely suppressed is 80 °C/s. A non-isothermal phase transformation kinetics equation for the β phase eutectoid transformation was established: <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>−</mo><mi>exp</mi><mrow><mo>{</mo><mrow><mo>−</mo><msup><mrow><mo>{</mo><mrow><mn>34.703</mn><msup><mi>r</mi><mrow><mo>−</mo><mn>1.062</mn></mrow></msup><mrow><mo>[</mo><mrow><mi>exp</mi><mrow><mo>(</mo><mrow><mo>−</mo><msup><mn>0.9107</mn><mi>r</mi></msup></mrow><mo>)</mo></mrow><mo>−</mo><mn>0.3575</mn></mrow><mo>]</mo></mrow></mrow><mo>}</mo></mrow><mn>2.2</mn></msup></mrow><mo>}</mo></mrow></mrow></math></span>, elucidating the relationship between the phase transformation fraction and the cooling rate, which provides a theoretical basis for controlling the microstructure of Cu–Be alloy through heat treatment. Validated by the Cu-3.3Be alloy, this equation demonstrates excellent universality.</p></div>","PeriodicalId":54332,"journal":{"name":"Journal of Materials Research and Technology-Jmr&t","volume":"33 ","pages":"Pages 821-833"},"PeriodicalIF":6.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2238785424020763/pdfft?md5=493e62e65b8897d8226147c7f15b0ae8&pid=1-s2.0-S2238785424020763-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Effect of cooling rate on eutectoid transformation of β phase in copper-beryllium alloy\",\"authors\":\"Xiaoyu Jiang ,&nbsp;Qiuhua Guo ,&nbsp;Wei Chen ,&nbsp;Linhan Li ,&nbsp;Yanbin Jiang ,&nbsp;Can Wang ,&nbsp;Daibo Zhu ,&nbsp;Shuhui Cui ,&nbsp;Mingda Han ,&nbsp;Zhou Li\",\"doi\":\"10.1016/j.jmrt.2024.09.071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The copper (Cu)-beryllium (Be) alloy is a critical material for high-performance photomultiplier cathodes. The microstructure evolution of the β phase in the Cu-2.8Be alloy subjected to cooling rate ranging from 0.5 to 80 °C/s after heat treatment. The non-isothermal phase transformation kinetics equation of the alloy was derived. At a cooling rate of 0.5 °C/s, the β phase completely transformed into the α phase and γ phase through a eutectoid reaction (β → α + γ). The γ phase preferentially precipitates at locations with higher free energy, such as grain boundaries and defects in the parent phase. The orientation relationship between the α phase and the γ phase follows the Kurdjumov-Sachs (K–S) relationship (<span><math><mrow><msub><mrow><mo>[</mo><mn>110</mn><mo>]</mo></mrow><mi>α</mi></msub><mo>∥</mo><msub><mrow><mo>[</mo><mn>111</mn><mo>]</mo></mrow><mi>γ</mi></msub></mrow></math></span>; <span><math><mrow><msub><mrow><mo>(</mo><mrow><mn>1</mn><mover><mn>1</mn><mo>‾</mo></mover><mover><mn>1</mn><mo>‾</mo></mover></mrow><mo>)</mo></mrow><mi>α</mi></msub><mo>∥</mo><msub><mrow><mo>(</mo><mrow><mn>0</mn><mover><mn>1</mn><mo>‾</mo></mover><mn>1</mn></mrow><mo>)</mo></mrow><mi>γ</mi></msub></mrow></math></span>), and the α phase nucleates and grows with a twin relationship to the Cu matrix. As the cooling rate increases, the transformation fraction of the β phase decreases. The critical cooling rate at which the β phase eutectoid reaction is completely suppressed is 80 °C/s. A non-isothermal phase transformation kinetics equation for the β phase eutectoid transformation was established: <span><math><mrow><mi>f</mi><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow><mo>=</mo><mn>1</mn><mo>−</mo><mi>exp</mi><mrow><mo>{</mo><mrow><mo>−</mo><msup><mrow><mo>{</mo><mrow><mn>34.703</mn><msup><mi>r</mi><mrow><mo>−</mo><mn>1.062</mn></mrow></msup><mrow><mo>[</mo><mrow><mi>exp</mi><mrow><mo>(</mo><mrow><mo>−</mo><msup><mn>0.9107</mn><mi>r</mi></msup></mrow><mo>)</mo></mrow><mo>−</mo><mn>0.3575</mn></mrow><mo>]</mo></mrow></mrow><mo>}</mo></mrow><mn>2.2</mn></msup></mrow><mo>}</mo></mrow></mrow></math></span>, elucidating the relationship between the phase transformation fraction and the cooling rate, which provides a theoretical basis for controlling the microstructure of Cu–Be alloy through heat treatment. Validated by the Cu-3.3Be alloy, this equation demonstrates excellent universality.</p></div>\",\"PeriodicalId\":54332,\"journal\":{\"name\":\"Journal of Materials Research and Technology-Jmr&t\",\"volume\":\"33 \",\"pages\":\"Pages 821-833\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2238785424020763/pdfft?md5=493e62e65b8897d8226147c7f15b0ae8&pid=1-s2.0-S2238785424020763-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Research and Technology-Jmr&t\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2238785424020763\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Research and Technology-Jmr&t","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2238785424020763","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

铜(Cu)-铍(Be)合金是高性能光电倍增管阴极的关键材料。研究了热处理后以 0.5 至 80 °C/s 的冷却速度冷却的 Cu-2.8Be 合金中 β 相的微观结构演变。得出了合金的非等温相变动力学方程。在冷却速度为 0.5 °C/s 时,β 相通过共晶反应(β → α + γ)完全转变为 α 相和γ 相。γ相优先析出在自由能较高的位置,如母体相的晶界和缺陷处。α相和γ相之间的取向关系遵循库尔德朱莫夫-萨克斯(Kurdjumov-Sachs,K-S)关系([110]α∥[111]γ;(11‾1‾)α∥(01‾1)γ),α相的成核和生长与铜基体呈孪生关系。随着冷却速率的增加,β相的转化率降低。β相共晶反应完全被抑制的临界冷却速率为 80 ℃/秒。建立了β相共晶转变的非等温相变动力学方程:f(r)=1-exp{-{34.703r-1.062[exp(-0.9107r)-0.3575]}2.2},阐明了相变分数与冷却速率之间的关系,为通过热处理控制铜铍合金的微观结构提供了理论依据。经 Cu-3.3Be 合金验证,该方程具有很好的通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of cooling rate on eutectoid transformation of β phase in copper-beryllium alloy

The copper (Cu)-beryllium (Be) alloy is a critical material for high-performance photomultiplier cathodes. The microstructure evolution of the β phase in the Cu-2.8Be alloy subjected to cooling rate ranging from 0.5 to 80 °C/s after heat treatment. The non-isothermal phase transformation kinetics equation of the alloy was derived. At a cooling rate of 0.5 °C/s, the β phase completely transformed into the α phase and γ phase through a eutectoid reaction (β → α + γ). The γ phase preferentially precipitates at locations with higher free energy, such as grain boundaries and defects in the parent phase. The orientation relationship between the α phase and the γ phase follows the Kurdjumov-Sachs (K–S) relationship ([110]α[111]γ; (111)α(011)γ), and the α phase nucleates and grows with a twin relationship to the Cu matrix. As the cooling rate increases, the transformation fraction of the β phase decreases. The critical cooling rate at which the β phase eutectoid reaction is completely suppressed is 80 °C/s. A non-isothermal phase transformation kinetics equation for the β phase eutectoid transformation was established: f(r)=1exp{{34.703r1.062[exp(0.9107r)0.3575]}2.2}, elucidating the relationship between the phase transformation fraction and the cooling rate, which provides a theoretical basis for controlling the microstructure of Cu–Be alloy through heat treatment. Validated by the Cu-3.3Be alloy, this equation demonstrates excellent universality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Research and Technology-Jmr&t
Journal of Materials Research and Technology-Jmr&t Materials Science-Metals and Alloys
CiteScore
8.80
自引率
9.40%
发文量
1877
审稿时长
35 days
期刊介绍: The Journal of Materials Research and Technology is a publication of ABM - Brazilian Metallurgical, Materials and Mining Association - and publishes four issues per year also with a free version online (www.jmrt.com.br). The journal provides an international medium for the publication of theoretical and experimental studies related to Metallurgy, Materials and Minerals research and technology. Appropriate submissions to the Journal of Materials Research and Technology should include scientific and/or engineering factors which affect processes and products in the Metallurgy, Materials and Mining areas.
期刊最新文献
Investigation of the impact of process parameters and thermal treatments on mechanical properties and microstructure of ScanCromAl ® manufactured via powder bed fusion laser beam process A novel high-Mn duplex twinning-induced plasticity lightweight steel with high yield strength and large ductility Influence of laser absorptivity of CuCr0.8 substrate surface state on the characteristics of laser directed energy deposition inconel 718 single track Additively manufactured FeCoNiSi0.2 alloy with excellent soft magnetic and mechanical properties through texture engineering Experimental study on the ballistic performance of CFRP/AFB sandwich plate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1