{"title":"揭示表面氨化梯度结构的疲劳强化和损伤机理","authors":"","doi":"10.1016/j.ijplas.2024.104128","DOIUrl":null,"url":null,"abstract":"<div><p>Extending the fatigue life of metals is a critical concern for maintaining material and component integrity in engineering systems. The integration of gradient structures within materials represents a highly promising approach to enhance the fatigue properties in metallic materials, while a detailed mechanistic understanding of the fatigue damage evolution of such structures is yet to be developed. Here, we report that the surface-nanolaminated gradient structure comprised of nanolaminates and hierarchical twins imparts remarkable resistance to both low-cycle and high-cycle fatigue. A dislocation-based strain gradient crystal plasticity model is developed to investigate the strengthening and damage mechanisms of our gradient structure. The size dependence of the initial dislocation density, its evolution and back stress hardening are taken into account and verified by the experimental data. The simulation results reveal that the strain delocalization and back stress hardening induced by the structure gradient significantly mitigate the fatigue damage accumulation. Additionally, in contrast to conventional gradient structures, the mechanical stability of the present structure enables these strengthening mechanisms to persist until crack initiation. These effects, combined with the sequential toughening mechanisms activated in the surface-nanolaminated gradient structure, ensure a marked life extension under low-cycle fatigue (by a factor of four), outperforming conventional gradient and other microstructural design strategies. Finally, a multiscale anti-fatigue design principal for damage homogenization is given based on the prior quantitative analysis.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revealing the fatigue strengthening and damage mechanisms of surface-nanolaminated gradient structure\",\"authors\":\"\",\"doi\":\"10.1016/j.ijplas.2024.104128\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Extending the fatigue life of metals is a critical concern for maintaining material and component integrity in engineering systems. The integration of gradient structures within materials represents a highly promising approach to enhance the fatigue properties in metallic materials, while a detailed mechanistic understanding of the fatigue damage evolution of such structures is yet to be developed. Here, we report that the surface-nanolaminated gradient structure comprised of nanolaminates and hierarchical twins imparts remarkable resistance to both low-cycle and high-cycle fatigue. A dislocation-based strain gradient crystal plasticity model is developed to investigate the strengthening and damage mechanisms of our gradient structure. The size dependence of the initial dislocation density, its evolution and back stress hardening are taken into account and verified by the experimental data. The simulation results reveal that the strain delocalization and back stress hardening induced by the structure gradient significantly mitigate the fatigue damage accumulation. Additionally, in contrast to conventional gradient structures, the mechanical stability of the present structure enables these strengthening mechanisms to persist until crack initiation. These effects, combined with the sequential toughening mechanisms activated in the surface-nanolaminated gradient structure, ensure a marked life extension under low-cycle fatigue (by a factor of four), outperforming conventional gradient and other microstructural design strategies. Finally, a multiscale anti-fatigue design principal for damage homogenization is given based on the prior quantitative analysis.</p></div>\",\"PeriodicalId\":340,\"journal\":{\"name\":\"International Journal of Plasticity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plasticity\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0749641924002559\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924002559","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Revealing the fatigue strengthening and damage mechanisms of surface-nanolaminated gradient structure
Extending the fatigue life of metals is a critical concern for maintaining material and component integrity in engineering systems. The integration of gradient structures within materials represents a highly promising approach to enhance the fatigue properties in metallic materials, while a detailed mechanistic understanding of the fatigue damage evolution of such structures is yet to be developed. Here, we report that the surface-nanolaminated gradient structure comprised of nanolaminates and hierarchical twins imparts remarkable resistance to both low-cycle and high-cycle fatigue. A dislocation-based strain gradient crystal plasticity model is developed to investigate the strengthening and damage mechanisms of our gradient structure. The size dependence of the initial dislocation density, its evolution and back stress hardening are taken into account and verified by the experimental data. The simulation results reveal that the strain delocalization and back stress hardening induced by the structure gradient significantly mitigate the fatigue damage accumulation. Additionally, in contrast to conventional gradient structures, the mechanical stability of the present structure enables these strengthening mechanisms to persist until crack initiation. These effects, combined with the sequential toughening mechanisms activated in the surface-nanolaminated gradient structure, ensure a marked life extension under low-cycle fatigue (by a factor of four), outperforming conventional gradient and other microstructural design strategies. Finally, a multiscale anti-fatigue design principal for damage homogenization is given based on the prior quantitative analysis.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.