Yiwei Geng , Rongjia Li , Ran Song , Zexuan Zhao , Xinliang Liu , Lei Liu , Lei Yang , Baojun Li , Xilei Chen , Chuanmei Jiao
{"title":"构建 ZIF-67@PBA 核壳三维交叉异质结构的新策略,以超低添加量提高热塑性聚氨酯的防火安全性","authors":"Yiwei Geng , Rongjia Li , Ran Song , Zexuan Zhao , Xinliang Liu , Lei Liu , Lei Yang , Baojun Li , Xilei Chen , Chuanmei Jiao","doi":"10.1016/j.polymdegradstab.2024.111004","DOIUrl":null,"url":null,"abstract":"<div><p>Thermoplastic polyurethane (TPU) has an extensive application in many different industries. However, serious fire hazards and smoke toxicity have been the main reason limiting its wide application. Therefore, it is necessary and urgent to perform flame retardant and smoke suppression treatment for TPU. In recent years, metal-organic framework compounds (MOFs) have very promising application prospects in the fields of flame-retardant polymer composites. However, there is a problem of low flame-retardant efficiency for the original MOFs alone in polymer composites. It is reported the multi-level and multi-structured flame-retardant system has better flame-retardant efficiency than the traditional structures. So, the dual MOF core-shell heterostructure may have more effective heat reduction and smoke suppression than any single component. In this paper, a core-shell 3D cross-heterostructures nanohybrid (ZIF-67H@PBA) was prepared using ZIF-67H as the host MOF and Prussian blue nanocubes (PBA) as the guest MOF. It has been found that TPU/ZIF-67H@PBA composites with ultra-low additions have excellent fire safety. Compared with those of pure TPU, the peak heat release rate (PHRR), total smoke release (TSP), and smoke factor (SF) of the samples with 0.5wt% ZIF-67H@PBA were reduced by 33.6 %, 47 %, and 61 %, respectively. At the same time, a cone calorimeter (CCT), a homemade soot sampling device and a gas chromatography-mass spectrometry (GC–MS) coupling with each other were constructed and used to demonstrate the most realistic effects of flame retardants in terms of smoke suppression and toxicity reduction. This work provides a new strategy to design TPU flame retardants.</p></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"229 ","pages":"Article 111004"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new strategy for constructing ZIF-67@PBA core-shell 3D cross-heterostructures for improving fire safety of TPU at ultra-low addition amount\",\"authors\":\"Yiwei Geng , Rongjia Li , Ran Song , Zexuan Zhao , Xinliang Liu , Lei Liu , Lei Yang , Baojun Li , Xilei Chen , Chuanmei Jiao\",\"doi\":\"10.1016/j.polymdegradstab.2024.111004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Thermoplastic polyurethane (TPU) has an extensive application in many different industries. However, serious fire hazards and smoke toxicity have been the main reason limiting its wide application. Therefore, it is necessary and urgent to perform flame retardant and smoke suppression treatment for TPU. In recent years, metal-organic framework compounds (MOFs) have very promising application prospects in the fields of flame-retardant polymer composites. However, there is a problem of low flame-retardant efficiency for the original MOFs alone in polymer composites. It is reported the multi-level and multi-structured flame-retardant system has better flame-retardant efficiency than the traditional structures. So, the dual MOF core-shell heterostructure may have more effective heat reduction and smoke suppression than any single component. In this paper, a core-shell 3D cross-heterostructures nanohybrid (ZIF-67H@PBA) was prepared using ZIF-67H as the host MOF and Prussian blue nanocubes (PBA) as the guest MOF. It has been found that TPU/ZIF-67H@PBA composites with ultra-low additions have excellent fire safety. Compared with those of pure TPU, the peak heat release rate (PHRR), total smoke release (TSP), and smoke factor (SF) of the samples with 0.5wt% ZIF-67H@PBA were reduced by 33.6 %, 47 %, and 61 %, respectively. At the same time, a cone calorimeter (CCT), a homemade soot sampling device and a gas chromatography-mass spectrometry (GC–MS) coupling with each other were constructed and used to demonstrate the most realistic effects of flame retardants in terms of smoke suppression and toxicity reduction. This work provides a new strategy to design TPU flame retardants.</p></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":\"229 \",\"pages\":\"Article 111004\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141391024003483\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391024003483","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
A new strategy for constructing ZIF-67@PBA core-shell 3D cross-heterostructures for improving fire safety of TPU at ultra-low addition amount
Thermoplastic polyurethane (TPU) has an extensive application in many different industries. However, serious fire hazards and smoke toxicity have been the main reason limiting its wide application. Therefore, it is necessary and urgent to perform flame retardant and smoke suppression treatment for TPU. In recent years, metal-organic framework compounds (MOFs) have very promising application prospects in the fields of flame-retardant polymer composites. However, there is a problem of low flame-retardant efficiency for the original MOFs alone in polymer composites. It is reported the multi-level and multi-structured flame-retardant system has better flame-retardant efficiency than the traditional structures. So, the dual MOF core-shell heterostructure may have more effective heat reduction and smoke suppression than any single component. In this paper, a core-shell 3D cross-heterostructures nanohybrid (ZIF-67H@PBA) was prepared using ZIF-67H as the host MOF and Prussian blue nanocubes (PBA) as the guest MOF. It has been found that TPU/ZIF-67H@PBA composites with ultra-low additions have excellent fire safety. Compared with those of pure TPU, the peak heat release rate (PHRR), total smoke release (TSP), and smoke factor (SF) of the samples with 0.5wt% ZIF-67H@PBA were reduced by 33.6 %, 47 %, and 61 %, respectively. At the same time, a cone calorimeter (CCT), a homemade soot sampling device and a gas chromatography-mass spectrometry (GC–MS) coupling with each other were constructed and used to demonstrate the most realistic effects of flame retardants in terms of smoke suppression and toxicity reduction. This work provides a new strategy to design TPU flame retardants.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.