爆震条件下自燃时间计算方法及燃烧参数对自燃影响的研究

IF 5.6 2区 工程技术 Q2 ENERGY & FUELS Journal of The Energy Institute Pub Date : 2024-09-05 DOI:10.1016/j.joei.2024.101818
Hao Yu, Yan Su, Bo Shen, Yulin Zhang, Bin Wang, Xiaoping Li, Fangxi Xie
{"title":"爆震条件下自燃时间计算方法及燃烧参数对自燃影响的研究","authors":"Hao Yu,&nbsp;Yan Su,&nbsp;Bo Shen,&nbsp;Yulin Zhang,&nbsp;Bin Wang,&nbsp;Xiaoping Li,&nbsp;Fangxi Xie","doi":"10.1016/j.joei.2024.101818","DOIUrl":null,"url":null,"abstract":"<div><p>Auto-ignition triggering plays an important role in the study of knock, accurate and generalized calculation methods are of great significance. In this study, a brand new calculation method of end-mixture auto-ignition timing based on heat release rate (HRR) is proposed based on several sets of data with different knock intensities of a small turbocharged gasoline engine. The calculation method effectively eliminates the effect of fluctuations in the actual HRR data by setting the search range and the auto-ignition threshold, and also eliminates the calculation delay caused by the second-order derivatives of HRR in the regular calculation method. Under this calculation method, the auto-ignition and knock characteristics present a good fit. The effects of combustion parameters on auto-ignition are significantly different. The changes in engine coolant and inlet air temperature as well as the over-rich mixture significantly affected the auto-ignition trigger pressure, while the ignition timing and the over-lean mixture had no effect on it. The effects of methanol on auto-ignition trigger pressure were also significantly different under various injection timings. The calculation of auto-ignition timing provides a vital prerequisite for the study of auto-ignition triggering, which is of obvious significance for the study of knock.</p></div>","PeriodicalId":17287,"journal":{"name":"Journal of The Energy Institute","volume":"117 ","pages":"Article 101818"},"PeriodicalIF":5.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on the calculation method of auto-ignition timing and the effect of combustion parameters on auto-ignition under knock condition\",\"authors\":\"Hao Yu,&nbsp;Yan Su,&nbsp;Bo Shen,&nbsp;Yulin Zhang,&nbsp;Bin Wang,&nbsp;Xiaoping Li,&nbsp;Fangxi Xie\",\"doi\":\"10.1016/j.joei.2024.101818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Auto-ignition triggering plays an important role in the study of knock, accurate and generalized calculation methods are of great significance. In this study, a brand new calculation method of end-mixture auto-ignition timing based on heat release rate (HRR) is proposed based on several sets of data with different knock intensities of a small turbocharged gasoline engine. The calculation method effectively eliminates the effect of fluctuations in the actual HRR data by setting the search range and the auto-ignition threshold, and also eliminates the calculation delay caused by the second-order derivatives of HRR in the regular calculation method. Under this calculation method, the auto-ignition and knock characteristics present a good fit. The effects of combustion parameters on auto-ignition are significantly different. The changes in engine coolant and inlet air temperature as well as the over-rich mixture significantly affected the auto-ignition trigger pressure, while the ignition timing and the over-lean mixture had no effect on it. The effects of methanol on auto-ignition trigger pressure were also significantly different under various injection timings. The calculation of auto-ignition timing provides a vital prerequisite for the study of auto-ignition triggering, which is of obvious significance for the study of knock.</p></div>\",\"PeriodicalId\":17287,\"journal\":{\"name\":\"Journal of The Energy Institute\",\"volume\":\"117 \",\"pages\":\"Article 101818\"},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of The Energy Institute\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1743967124002964\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Energy Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1743967124002964","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

自燃触发在爆震研究中起着重要作用,精确和通用的计算方法意义重大。本研究基于几组不同爆震强度的小型涡轮增压汽油发动机数据,提出了一种全新的基于热释放率(HRR)的末端混合气自燃正时计算方法。该计算方法通过设置搜索范围和自动点火阈值,有效地消除了实际 HRR 数据波动的影响,同时也消除了常规计算方法中 HRR 二阶导数造成的计算延迟。在这种计算方法下,自燃和爆震特性呈现出良好的拟合效果。燃烧参数对自燃的影响明显不同。发动机冷却液和进气温度以及过浓混合气的变化对自燃触发压力有明显影响,而点火正时和过稀混合气则没有影响。在不同的喷油时间下,甲醇对自燃触发压力的影响也明显不同。自动点火时间的计算为研究自动点火触发提供了重要的前提条件,而自动点火触发对于研究爆震具有明显的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on the calculation method of auto-ignition timing and the effect of combustion parameters on auto-ignition under knock condition

Auto-ignition triggering plays an important role in the study of knock, accurate and generalized calculation methods are of great significance. In this study, a brand new calculation method of end-mixture auto-ignition timing based on heat release rate (HRR) is proposed based on several sets of data with different knock intensities of a small turbocharged gasoline engine. The calculation method effectively eliminates the effect of fluctuations in the actual HRR data by setting the search range and the auto-ignition threshold, and also eliminates the calculation delay caused by the second-order derivatives of HRR in the regular calculation method. Under this calculation method, the auto-ignition and knock characteristics present a good fit. The effects of combustion parameters on auto-ignition are significantly different. The changes in engine coolant and inlet air temperature as well as the over-rich mixture significantly affected the auto-ignition trigger pressure, while the ignition timing and the over-lean mixture had no effect on it. The effects of methanol on auto-ignition trigger pressure were also significantly different under various injection timings. The calculation of auto-ignition timing provides a vital prerequisite for the study of auto-ignition triggering, which is of obvious significance for the study of knock.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of The Energy Institute
Journal of The Energy Institute 工程技术-能源与燃料
CiteScore
10.60
自引率
5.30%
发文量
166
审稿时长
16 days
期刊介绍: The Journal of the Energy Institute provides peer reviewed coverage of original high quality research on energy, engineering and technology.The coverage is broad and the main areas of interest include: Combustion engineering and associated technologies; process heating; power generation; engines and propulsion; emissions and environmental pollution control; clean coal technologies; carbon abatement technologies Emissions and environmental pollution control; safety and hazards; Clean coal technologies; carbon abatement technologies, including carbon capture and storage, CCS; Petroleum engineering and fuel quality, including storage and transport Alternative energy sources; biomass utilisation and biomass conversion technologies; energy from waste, incineration and recycling Energy conversion, energy recovery and energy efficiency; space heating, fuel cells, heat pumps and cooling systems Energy storage The journal''s coverage reflects changes in energy technology that result from the transition to more efficient energy production and end use together with reduced carbon emission.
期刊最新文献
Editorial Board Synergistic recovery of renewable hydrocarbon resources via co-pyrolysis of non-edible linseed and waste polypropylene: A study on influence of plastic on oil production and their utilization as a fuel for IC engine Comprehensive performance investigation of inexpensive oxygen carrier in chemical looping gasification of coal Cerium-induced modification of acid-base sites in Ni-zeolite catalysts for improved dry reforming of methane The impact of ignition and activation energy distribution on the combustion and emission characteristics of diesel-ammonia-natural gas engines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1