Jai Kumar , Akhil Gupta , Sudeep Tanwar , Muhammad Khurram Khan
{"title":"5G 及其后无线通信信道模型综述:应用与挑战","authors":"Jai Kumar , Akhil Gupta , Sudeep Tanwar , Muhammad Khurram Khan","doi":"10.1016/j.phycom.2024.102488","DOIUrl":null,"url":null,"abstract":"<div><p>The ever-growing demand for increased data rates, reduced latency, and more reliable connectivity has driven the emergence of the fifth-generation (5G) wireless communication network, necessitating a significant shift in our approach to channel modeling. To achieve these ambitious goals, channel models must adopt various key enabling technologies, such as massive multiple input multiple outputs (MIMO), beamforming, and mobile edge computing, for various scenario-based applications, and adhere to developed channel standards. Our work comprehensively reviews various wireless channel models, emphasizing their applications and challenges. A concise overview of channel models for 5G and beyond provides important information about various channel modeling approaches, their standards, and protocols that are significant to their development for diverse applications in real-world scenarios. A complete list of standard channel models used in the industry, such as the third-generation partnership project, METIS, QuaDRiGa, and mmMAGIC, will help researchers and application developers understand the needs of different fields to achieve their Key Performance Indicators (KPIs). The paper also highlights important features of each channel model with a comparison of important channel characteristics and identified channel modeling issues reported in the current literature. This paper also explores the connections between channel models and other revolutionary (cutting-edge) technologies, including the use of soft computing tools (machine learning), data handling tools (cloud computing and big data analytics), and massive MIMO for use-case realization. The paper concludes that there is a need for further advancements in channel modeling to meet the requirements of the next generation by effectively addressing the challenges of the current generation. Extreme scenario channel models such as aeronautics, UAVs, deep space exploration, and massive MIMO channels require the inclusion of advanced machine learning techniques for improved performance.</p></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"67 ","pages":"Article 102488"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A review on 5G and beyond wireless communication channel models: Applications and challenges\",\"authors\":\"Jai Kumar , Akhil Gupta , Sudeep Tanwar , Muhammad Khurram Khan\",\"doi\":\"10.1016/j.phycom.2024.102488\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The ever-growing demand for increased data rates, reduced latency, and more reliable connectivity has driven the emergence of the fifth-generation (5G) wireless communication network, necessitating a significant shift in our approach to channel modeling. To achieve these ambitious goals, channel models must adopt various key enabling technologies, such as massive multiple input multiple outputs (MIMO), beamforming, and mobile edge computing, for various scenario-based applications, and adhere to developed channel standards. Our work comprehensively reviews various wireless channel models, emphasizing their applications and challenges. A concise overview of channel models for 5G and beyond provides important information about various channel modeling approaches, their standards, and protocols that are significant to their development for diverse applications in real-world scenarios. A complete list of standard channel models used in the industry, such as the third-generation partnership project, METIS, QuaDRiGa, and mmMAGIC, will help researchers and application developers understand the needs of different fields to achieve their Key Performance Indicators (KPIs). The paper also highlights important features of each channel model with a comparison of important channel characteristics and identified channel modeling issues reported in the current literature. This paper also explores the connections between channel models and other revolutionary (cutting-edge) technologies, including the use of soft computing tools (machine learning), data handling tools (cloud computing and big data analytics), and massive MIMO for use-case realization. The paper concludes that there is a need for further advancements in channel modeling to meet the requirements of the next generation by effectively addressing the challenges of the current generation. Extreme scenario channel models such as aeronautics, UAVs, deep space exploration, and massive MIMO channels require the inclusion of advanced machine learning techniques for improved performance.</p></div>\",\"PeriodicalId\":48707,\"journal\":{\"name\":\"Physical Communication\",\"volume\":\"67 \",\"pages\":\"Article 102488\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874490724002064\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490724002064","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A review on 5G and beyond wireless communication channel models: Applications and challenges
The ever-growing demand for increased data rates, reduced latency, and more reliable connectivity has driven the emergence of the fifth-generation (5G) wireless communication network, necessitating a significant shift in our approach to channel modeling. To achieve these ambitious goals, channel models must adopt various key enabling technologies, such as massive multiple input multiple outputs (MIMO), beamforming, and mobile edge computing, for various scenario-based applications, and adhere to developed channel standards. Our work comprehensively reviews various wireless channel models, emphasizing their applications and challenges. A concise overview of channel models for 5G and beyond provides important information about various channel modeling approaches, their standards, and protocols that are significant to their development for diverse applications in real-world scenarios. A complete list of standard channel models used in the industry, such as the third-generation partnership project, METIS, QuaDRiGa, and mmMAGIC, will help researchers and application developers understand the needs of different fields to achieve their Key Performance Indicators (KPIs). The paper also highlights important features of each channel model with a comparison of important channel characteristics and identified channel modeling issues reported in the current literature. This paper also explores the connections between channel models and other revolutionary (cutting-edge) technologies, including the use of soft computing tools (machine learning), data handling tools (cloud computing and big data analytics), and massive MIMO for use-case realization. The paper concludes that there is a need for further advancements in channel modeling to meet the requirements of the next generation by effectively addressing the challenges of the current generation. Extreme scenario channel models such as aeronautics, UAVs, deep space exploration, and massive MIMO channels require the inclusion of advanced machine learning techniques for improved performance.
期刊介绍:
PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published.
Topics of interest include but are not limited to:
Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.