使用自监督注意力驱动的 CNN-BiLSTM-VAE 组合进行脉冲内调制识别

IF 2 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Physical Communication Pub Date : 2024-09-11 DOI:10.1016/j.phycom.2024.102500
Purabi Sharma, Kandarpa Kumar Sarma
{"title":"使用自监督注意力驱动的 CNN-BiLSTM-VAE 组合进行脉冲内调制识别","authors":"Purabi Sharma,&nbsp;Kandarpa Kumar Sarma","doi":"10.1016/j.phycom.2024.102500","DOIUrl":null,"url":null,"abstract":"<div><p>Identification of intra-pulse modulation (IPM) of radar signals is a crucial part of contemporary electronic support systems and electronic intelligence reconnaissance. Artificial intelligence (AI)-based methods can be very effective in recognising the IPM of radar signals. In this direction, an automatic method is proposed for recognising a few IPMs of radar signals based on continuous wavelet transform (CWT) and a hybrid model of self-attention (SA)-aided convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM). Firstly, time–frequency attributes of different radar signals are obtained using CWT, and thereafter CNN-SA-BiLSTM is utilised for feature extraction from the 2D scalograms formed by the time–frequency components. The CNN extracts features from the scalograms, SA enhances the discriminative power of the feature map, and BiLSTM detects radar signals based on these features. Additionally, the study addresses real-world data imbalance issues by incorporating a generative AI model, namely the Variational Autoencoder (VAE). The VAE-based approach effectively mitigates challenges arising from data imbalance situations. This method is tested at varying noise levels to give a proper representation of the actual electronic warfare environment. The simulation results demonstrate that the best overall recognition accuracy of the proposed method is 98.4%, even at low signal-to-noise ratios (SNR).</p></div>","PeriodicalId":48707,"journal":{"name":"Physical Communication","volume":"67 ","pages":"Article 102500"},"PeriodicalIF":2.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intra-pulse modulation discrimination using a self-supervised attention-driven CNN-BiLSTM-VAE combination\",\"authors\":\"Purabi Sharma,&nbsp;Kandarpa Kumar Sarma\",\"doi\":\"10.1016/j.phycom.2024.102500\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Identification of intra-pulse modulation (IPM) of radar signals is a crucial part of contemporary electronic support systems and electronic intelligence reconnaissance. Artificial intelligence (AI)-based methods can be very effective in recognising the IPM of radar signals. In this direction, an automatic method is proposed for recognising a few IPMs of radar signals based on continuous wavelet transform (CWT) and a hybrid model of self-attention (SA)-aided convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM). Firstly, time–frequency attributes of different radar signals are obtained using CWT, and thereafter CNN-SA-BiLSTM is utilised for feature extraction from the 2D scalograms formed by the time–frequency components. The CNN extracts features from the scalograms, SA enhances the discriminative power of the feature map, and BiLSTM detects radar signals based on these features. Additionally, the study addresses real-world data imbalance issues by incorporating a generative AI model, namely the Variational Autoencoder (VAE). The VAE-based approach effectively mitigates challenges arising from data imbalance situations. This method is tested at varying noise levels to give a proper representation of the actual electronic warfare environment. The simulation results demonstrate that the best overall recognition accuracy of the proposed method is 98.4%, even at low signal-to-noise ratios (SNR).</p></div>\",\"PeriodicalId\":48707,\"journal\":{\"name\":\"Physical Communication\",\"volume\":\"67 \",\"pages\":\"Article 102500\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Communication\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1874490724002180\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Communication","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1874490724002180","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

识别雷达信号的脉冲内调制(IPM)是当代电子支持系统和电子情报侦察的重要组成部分。基于人工智能(AI)的方法可以非常有效地识别雷达信号的 IPM。为此,我们提出了一种基于连续小波变换(CWT)以及自注意(SA)辅助卷积神经网络(CNN)和双向长短期记忆(BiLSTM)混合模型的雷达信号 IPM 自动识别方法。首先,利用 CWT 获取不同雷达信号的时频属性,然后利用 CNN-SA-BiLSTM 从时频分量形成的二维扫描图中提取特征。CNN 从扫描图中提取特征,SA 增强特征图的判别能力,BiLSTM 根据这些特征检测雷达信号。此外,该研究还通过采用生成式人工智能模型(即变异自动编码器 (VAE))来解决现实世界中的数据不平衡问题。基于变异自动编码器的方法能有效缓解数据不平衡带来的挑战。该方法在不同噪声水平下进行了测试,以正确反映实际电子战环境。仿真结果表明,即使在信噪比(SNR)较低的情况下,拟议方法的最佳总体识别准确率也能达到 98.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intra-pulse modulation discrimination using a self-supervised attention-driven CNN-BiLSTM-VAE combination

Identification of intra-pulse modulation (IPM) of radar signals is a crucial part of contemporary electronic support systems and electronic intelligence reconnaissance. Artificial intelligence (AI)-based methods can be very effective in recognising the IPM of radar signals. In this direction, an automatic method is proposed for recognising a few IPMs of radar signals based on continuous wavelet transform (CWT) and a hybrid model of self-attention (SA)-aided convolutional neural network (CNN) and bidirectional long short-term memory (BiLSTM). Firstly, time–frequency attributes of different radar signals are obtained using CWT, and thereafter CNN-SA-BiLSTM is utilised for feature extraction from the 2D scalograms formed by the time–frequency components. The CNN extracts features from the scalograms, SA enhances the discriminative power of the feature map, and BiLSTM detects radar signals based on these features. Additionally, the study addresses real-world data imbalance issues by incorporating a generative AI model, namely the Variational Autoencoder (VAE). The VAE-based approach effectively mitigates challenges arising from data imbalance situations. This method is tested at varying noise levels to give a proper representation of the actual electronic warfare environment. The simulation results demonstrate that the best overall recognition accuracy of the proposed method is 98.4%, even at low signal-to-noise ratios (SNR).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Communication
Physical Communication ENGINEERING, ELECTRICAL & ELECTRONICTELECO-TELECOMMUNICATIONS
CiteScore
5.00
自引率
9.10%
发文量
212
审稿时长
55 days
期刊介绍: PHYCOM: Physical Communication is an international and archival journal providing complete coverage of all topics of interest to those involved in all aspects of physical layer communications. Theoretical research contributions presenting new techniques, concepts or analyses, applied contributions reporting on experiences and experiments, and tutorials are published. Topics of interest include but are not limited to: Physical layer issues of Wireless Local Area Networks, WiMAX, Wireless Mesh Networks, Sensor and Ad Hoc Networks, PCS Systems; Radio access protocols and algorithms for the physical layer; Spread Spectrum Communications; Channel Modeling; Detection and Estimation; Modulation and Coding; Multiplexing and Carrier Techniques; Broadband Wireless Communications; Wireless Personal Communications; Multi-user Detection; Signal Separation and Interference rejection: Multimedia Communications over Wireless; DSP Applications to Wireless Systems; Experimental and Prototype Results; Multiple Access Techniques; Space-time Processing; Synchronization Techniques; Error Control Techniques; Cryptography; Software Radios; Tracking; Resource Allocation and Inference Management; Multi-rate and Multi-carrier Communications; Cross layer Design and Optimization; Propagation and Channel Characterization; OFDM Systems; MIMO Systems; Ultra-Wideband Communications; Cognitive Radio System Architectures; Platforms and Hardware Implementations for the Support of Cognitive, Radio Systems; Cognitive Radio Resource Management and Dynamic Spectrum Sharing.
期刊最新文献
Hybrid FSO/RF and UWOC system for enabling terrestrial–underwater communication: Performance analysis Enhancing performance of end-to-end communication system using Attention Mechanism-based Sparse Autoencoder over Rayleigh fading channel Clustering based strategic 3D deployment and trajectory optimization of UAVs with A-star algorithm for enhanced disaster response Modified fractional power allocation for downlink cell-free massive MIMO systems Joint RSU and agent vehicle cooperative localization using mmWave sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1