设计和制备装饰在 rGO 片材上的 MnCo2O4@MnCo2S4 核@壳纳米结构阵列,用于高性能不对称超级电容器

IF 3.8 Q2 CHEMISTRY, PHYSICAL Chemical Physics Impact Pub Date : 2024-09-11 DOI:10.1016/j.chphi.2024.100734
N. Vijayakumar , A. Thirugnanasundar
{"title":"设计和制备装饰在 rGO 片材上的 MnCo2O4@MnCo2S4 核@壳纳米结构阵列,用于高性能不对称超级电容器","authors":"N. Vijayakumar ,&nbsp;A. Thirugnanasundar","doi":"10.1016/j.chphi.2024.100734","DOIUrl":null,"url":null,"abstract":"<div><p>In order to create reliable and effective energy storage systems, it is crucial to choose electrode materials that exhibit high stability and energy density. In this work, MnCo<sub>2</sub>S<sub>4</sub>@MnCo<sub>2</sub>O<sub>4</sub> core@shell nanoneedle-like nanostructures (MCS@MCO/rGO) are synthesised over a rGO sheet using an innovative and easy hydrothermal technique. Electrolyte transport and sulphur incorporation during charge-discharge reactions are both made easier by the core@shell nanostructured arrays' large active surface area. With an appropriate pore size distribution centred at 13.4 nm and a high surface area of 125.4 m<sup>2</sup>g<sup>-1</sup>, the ternary electrodes composed of MCS@MCO and rGO have a rich mesoporous structure. A specific capacitance of 1346 Fg<sup>-1</sup> at 1 Ag<sup>-1</sup> demonstrates the exceptional performance of the MCS@MCO/rGO ternary electrode. The MCS@MCO/rGO ternary electrodes show a remarkable cyclic stability of 88.9 % capacity retention over 10,000 cycles, according to the cycling stability studies. With an impressive power density of 1010 Wkg<sup>-1</sup> and remarkable cycling stability (95.5 % retention of the original capacitance after 10,000 cycles), the manufactured MCS@MCO/rGO//AC ACS displays an impressive energy density of 57.5 Whkg<sup>-1</sup>. The mesoporous structure is excellent for increasing the characteristics of supercapacitor electrodes, as these astounding results can demonstrate.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667022424002780/pdfft?md5=1b864eb2930219ca6ac89be4f048ec4a&pid=1-s2.0-S2667022424002780-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Design and fabrication of MnCo2O4@MnCo2S4 Core@Shell nanostructured arrays decorated over the rGO sheets for high-performance asymmetric supercapacitor\",\"authors\":\"N. Vijayakumar ,&nbsp;A. Thirugnanasundar\",\"doi\":\"10.1016/j.chphi.2024.100734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to create reliable and effective energy storage systems, it is crucial to choose electrode materials that exhibit high stability and energy density. In this work, MnCo<sub>2</sub>S<sub>4</sub>@MnCo<sub>2</sub>O<sub>4</sub> core@shell nanoneedle-like nanostructures (MCS@MCO/rGO) are synthesised over a rGO sheet using an innovative and easy hydrothermal technique. Electrolyte transport and sulphur incorporation during charge-discharge reactions are both made easier by the core@shell nanostructured arrays' large active surface area. With an appropriate pore size distribution centred at 13.4 nm and a high surface area of 125.4 m<sup>2</sup>g<sup>-1</sup>, the ternary electrodes composed of MCS@MCO and rGO have a rich mesoporous structure. A specific capacitance of 1346 Fg<sup>-1</sup> at 1 Ag<sup>-1</sup> demonstrates the exceptional performance of the MCS@MCO/rGO ternary electrode. The MCS@MCO/rGO ternary electrodes show a remarkable cyclic stability of 88.9 % capacity retention over 10,000 cycles, according to the cycling stability studies. With an impressive power density of 1010 Wkg<sup>-1</sup> and remarkable cycling stability (95.5 % retention of the original capacitance after 10,000 cycles), the manufactured MCS@MCO/rGO//AC ACS displays an impressive energy density of 57.5 Whkg<sup>-1</sup>. The mesoporous structure is excellent for increasing the characteristics of supercapacitor electrodes, as these astounding results can demonstrate.</p></div>\",\"PeriodicalId\":9758,\"journal\":{\"name\":\"Chemical Physics Impact\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667022424002780/pdfft?md5=1b864eb2930219ca6ac89be4f048ec4a&pid=1-s2.0-S2667022424002780-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667022424002780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022424002780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了创建可靠而有效的储能系统,选择具有高稳定性和高能量密度的电极材料至关重要。在这项工作中,采用创新的简便水热技术在 rGO 片材上合成了 MnCo2S4@MnCo2O4 核@壳纳米锥状纳米结构(MCS@MCO/rGO)。由于芯@壳纳米结构阵列具有较大的活性表面积,因此在充放电反应过程中电解液的传输和硫的掺入都变得更加容易。由 MCS@MCO 和 rGO 组成的三元电极具有以 13.4 nm 为中心的适当孔径分布和 125.4 m2g-1 的高表面积,具有丰富的介孔结构。在 1 Ag-1 的条件下,MCS@MCO/rGO 三元电极的比电容为 1346 Fg-1,这证明了 MCS@MCO/rGO 三元电极的优异性能。根据循环稳定性研究,MCS@MCO/rGO 三元电极具有显著的循环稳定性,在 10,000 次循环中的容量保持率为 88.9%。制造出的 MCS@MCO/rGO//AC ACS 具有 1010 Wkg-1 的惊人功率密度和显著的循环稳定性(10,000 次循环后原始电容保持率为 95.5%),显示出 57.5 Whkg-1 的惊人能量密度。正如这些令人震惊的结果所证明的那样,介孔结构是提高超级电容器电极特性的绝佳材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and fabrication of MnCo2O4@MnCo2S4 Core@Shell nanostructured arrays decorated over the rGO sheets for high-performance asymmetric supercapacitor

In order to create reliable and effective energy storage systems, it is crucial to choose electrode materials that exhibit high stability and energy density. In this work, MnCo2S4@MnCo2O4 core@shell nanoneedle-like nanostructures (MCS@MCO/rGO) are synthesised over a rGO sheet using an innovative and easy hydrothermal technique. Electrolyte transport and sulphur incorporation during charge-discharge reactions are both made easier by the core@shell nanostructured arrays' large active surface area. With an appropriate pore size distribution centred at 13.4 nm and a high surface area of 125.4 m2g-1, the ternary electrodes composed of MCS@MCO and rGO have a rich mesoporous structure. A specific capacitance of 1346 Fg-1 at 1 Ag-1 demonstrates the exceptional performance of the MCS@MCO/rGO ternary electrode. The MCS@MCO/rGO ternary electrodes show a remarkable cyclic stability of 88.9 % capacity retention over 10,000 cycles, according to the cycling stability studies. With an impressive power density of 1010 Wkg-1 and remarkable cycling stability (95.5 % retention of the original capacitance after 10,000 cycles), the manufactured MCS@MCO/rGO//AC ACS displays an impressive energy density of 57.5 Whkg-1. The mesoporous structure is excellent for increasing the characteristics of supercapacitor electrodes, as these astounding results can demonstrate.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Physics Impact
Chemical Physics Impact Materials Science-Materials Science (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
65
审稿时长
46 days
期刊最新文献
Magnetic driven particle migration in PES membrane for phenol adsorption study: Isotherm and kinetic model perspective 50 MeV Li- and 80 MeV Ni- ions induced modification in ZnO cauliflower like structure: Structural, optical and electrical studies Characterization of green-synthesized carbon quantum dots from spent coffee grounds for EDLC electrode applications Trapping light, revealing properties: Laser trapping as a powerful tool for photoluminescence spectroscopy Green synthesis of bimetallic Ag-ZnO nanocomposite using polyherbal extract for antibacterial and anti-inflammatory activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1