{"title":"设计和制备装饰在 rGO 片材上的 MnCo2O4@MnCo2S4 核@壳纳米结构阵列,用于高性能不对称超级电容器","authors":"N. Vijayakumar , A. Thirugnanasundar","doi":"10.1016/j.chphi.2024.100734","DOIUrl":null,"url":null,"abstract":"<div><p>In order to create reliable and effective energy storage systems, it is crucial to choose electrode materials that exhibit high stability and energy density. In this work, MnCo<sub>2</sub>S<sub>4</sub>@MnCo<sub>2</sub>O<sub>4</sub> core@shell nanoneedle-like nanostructures (MCS@MCO/rGO) are synthesised over a rGO sheet using an innovative and easy hydrothermal technique. Electrolyte transport and sulphur incorporation during charge-discharge reactions are both made easier by the core@shell nanostructured arrays' large active surface area. With an appropriate pore size distribution centred at 13.4 nm and a high surface area of 125.4 m<sup>2</sup>g<sup>-1</sup>, the ternary electrodes composed of MCS@MCO and rGO have a rich mesoporous structure. A specific capacitance of 1346 Fg<sup>-1</sup> at 1 Ag<sup>-1</sup> demonstrates the exceptional performance of the MCS@MCO/rGO ternary electrode. The MCS@MCO/rGO ternary electrodes show a remarkable cyclic stability of 88.9 % capacity retention over 10,000 cycles, according to the cycling stability studies. With an impressive power density of 1010 Wkg<sup>-1</sup> and remarkable cycling stability (95.5 % retention of the original capacitance after 10,000 cycles), the manufactured MCS@MCO/rGO//AC ACS displays an impressive energy density of 57.5 Whkg<sup>-1</sup>. The mesoporous structure is excellent for increasing the characteristics of supercapacitor electrodes, as these astounding results can demonstrate.</p></div>","PeriodicalId":9758,"journal":{"name":"Chemical Physics Impact","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667022424002780/pdfft?md5=1b864eb2930219ca6ac89be4f048ec4a&pid=1-s2.0-S2667022424002780-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Design and fabrication of MnCo2O4@MnCo2S4 Core@Shell nanostructured arrays decorated over the rGO sheets for high-performance asymmetric supercapacitor\",\"authors\":\"N. Vijayakumar , A. Thirugnanasundar\",\"doi\":\"10.1016/j.chphi.2024.100734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In order to create reliable and effective energy storage systems, it is crucial to choose electrode materials that exhibit high stability and energy density. In this work, MnCo<sub>2</sub>S<sub>4</sub>@MnCo<sub>2</sub>O<sub>4</sub> core@shell nanoneedle-like nanostructures (MCS@MCO/rGO) are synthesised over a rGO sheet using an innovative and easy hydrothermal technique. Electrolyte transport and sulphur incorporation during charge-discharge reactions are both made easier by the core@shell nanostructured arrays' large active surface area. With an appropriate pore size distribution centred at 13.4 nm and a high surface area of 125.4 m<sup>2</sup>g<sup>-1</sup>, the ternary electrodes composed of MCS@MCO and rGO have a rich mesoporous structure. A specific capacitance of 1346 Fg<sup>-1</sup> at 1 Ag<sup>-1</sup> demonstrates the exceptional performance of the MCS@MCO/rGO ternary electrode. The MCS@MCO/rGO ternary electrodes show a remarkable cyclic stability of 88.9 % capacity retention over 10,000 cycles, according to the cycling stability studies. With an impressive power density of 1010 Wkg<sup>-1</sup> and remarkable cycling stability (95.5 % retention of the original capacitance after 10,000 cycles), the manufactured MCS@MCO/rGO//AC ACS displays an impressive energy density of 57.5 Whkg<sup>-1</sup>. The mesoporous structure is excellent for increasing the characteristics of supercapacitor electrodes, as these astounding results can demonstrate.</p></div>\",\"PeriodicalId\":9758,\"journal\":{\"name\":\"Chemical Physics Impact\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667022424002780/pdfft?md5=1b864eb2930219ca6ac89be4f048ec4a&pid=1-s2.0-S2667022424002780-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Physics Impact\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667022424002780\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Physics Impact","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667022424002780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Design and fabrication of MnCo2O4@MnCo2S4 Core@Shell nanostructured arrays decorated over the rGO sheets for high-performance asymmetric supercapacitor
In order to create reliable and effective energy storage systems, it is crucial to choose electrode materials that exhibit high stability and energy density. In this work, MnCo2S4@MnCo2O4 core@shell nanoneedle-like nanostructures (MCS@MCO/rGO) are synthesised over a rGO sheet using an innovative and easy hydrothermal technique. Electrolyte transport and sulphur incorporation during charge-discharge reactions are both made easier by the core@shell nanostructured arrays' large active surface area. With an appropriate pore size distribution centred at 13.4 nm and a high surface area of 125.4 m2g-1, the ternary electrodes composed of MCS@MCO and rGO have a rich mesoporous structure. A specific capacitance of 1346 Fg-1 at 1 Ag-1 demonstrates the exceptional performance of the MCS@MCO/rGO ternary electrode. The MCS@MCO/rGO ternary electrodes show a remarkable cyclic stability of 88.9 % capacity retention over 10,000 cycles, according to the cycling stability studies. With an impressive power density of 1010 Wkg-1 and remarkable cycling stability (95.5 % retention of the original capacitance after 10,000 cycles), the manufactured MCS@MCO/rGO//AC ACS displays an impressive energy density of 57.5 Whkg-1. The mesoporous structure is excellent for increasing the characteristics of supercapacitor electrodes, as these astounding results can demonstrate.