Sobhi Nour El Houda , Boukhouiete Amel , Foudia Malika
{"title":"三叶草提取物作为 3.5% NaCl 溶液中碳钢的绿色缓蚀剂","authors":"Sobhi Nour El Houda , Boukhouiete Amel , Foudia Malika","doi":"10.1016/j.jtice.2024.105771","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Material degradation is a major issue that has been the subject of intense research and investigation by the scientific community. It has harmful consequences that require serious and careful intervention. However, restrictions on the use of inhibitors containing toxic compounds pose a significant challenge to the implementation of effective corrosion treatments. This has necessitated a continuous search for new and innovative ways to protect against material damage. Plant-derived natural inhibitors offer several advantages, including potent inhibitory effects, lack of toxicity, biodegradability, and environmentally sustainable origins. The purpose of this research was to evaluate the corrosion resistance of API5LX60 carbon steel in a 3.5 % NaCl environment using Trifolium repens as an environmentally friendly inhibitor.</p></div><div><h3>Methods</h3><p>The inhibitor extract was analysed using Fourier Transform Infrared (FTIR) spectroscopy. However, gravimetry and electrochemical methods (potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)) were used to investigate the corrosion behaviour. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to examine the surface morphology.</p></div><div><h3>Significant findings</h3><p>After testing a range of concentrations in a 3.5 % NaCl medium, the highest level of inhibition (98 %) was obtained at 20 ppm, confirming the mixed action of the inhibitor with predominantly cathodic action. The inhibition mechanism involved physical adsorption on metal surfaces according to the Langmuir model, which enhances the corrosion-inhibiting ability; the extract forms a protective layer that successfully inhibits corrosion, as confirmed through electrochemical and surface analysis. These results demonstrate that the extract acts as a potent anticorrosive agent.</p></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105771"},"PeriodicalIF":5.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trifolium repens extracts as a green corrosion inhibitor for carbon steel in a 3.5% NaCl solution\",\"authors\":\"Sobhi Nour El Houda , Boukhouiete Amel , Foudia Malika\",\"doi\":\"10.1016/j.jtice.2024.105771\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><p>Material degradation is a major issue that has been the subject of intense research and investigation by the scientific community. It has harmful consequences that require serious and careful intervention. However, restrictions on the use of inhibitors containing toxic compounds pose a significant challenge to the implementation of effective corrosion treatments. This has necessitated a continuous search for new and innovative ways to protect against material damage. Plant-derived natural inhibitors offer several advantages, including potent inhibitory effects, lack of toxicity, biodegradability, and environmentally sustainable origins. The purpose of this research was to evaluate the corrosion resistance of API5LX60 carbon steel in a 3.5 % NaCl environment using Trifolium repens as an environmentally friendly inhibitor.</p></div><div><h3>Methods</h3><p>The inhibitor extract was analysed using Fourier Transform Infrared (FTIR) spectroscopy. However, gravimetry and electrochemical methods (potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)) were used to investigate the corrosion behaviour. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to examine the surface morphology.</p></div><div><h3>Significant findings</h3><p>After testing a range of concentrations in a 3.5 % NaCl medium, the highest level of inhibition (98 %) was obtained at 20 ppm, confirming the mixed action of the inhibitor with predominantly cathodic action. The inhibition mechanism involved physical adsorption on metal surfaces according to the Langmuir model, which enhances the corrosion-inhibiting ability; the extract forms a protective layer that successfully inhibits corrosion, as confirmed through electrochemical and surface analysis. These results demonstrate that the extract acts as a potent anticorrosive agent.</p></div>\",\"PeriodicalId\":381,\"journal\":{\"name\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"volume\":\"165 \",\"pages\":\"Article 105771\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876107024004292\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024004292","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Trifolium repens extracts as a green corrosion inhibitor for carbon steel in a 3.5% NaCl solution
Background
Material degradation is a major issue that has been the subject of intense research and investigation by the scientific community. It has harmful consequences that require serious and careful intervention. However, restrictions on the use of inhibitors containing toxic compounds pose a significant challenge to the implementation of effective corrosion treatments. This has necessitated a continuous search for new and innovative ways to protect against material damage. Plant-derived natural inhibitors offer several advantages, including potent inhibitory effects, lack of toxicity, biodegradability, and environmentally sustainable origins. The purpose of this research was to evaluate the corrosion resistance of API5LX60 carbon steel in a 3.5 % NaCl environment using Trifolium repens as an environmentally friendly inhibitor.
Methods
The inhibitor extract was analysed using Fourier Transform Infrared (FTIR) spectroscopy. However, gravimetry and electrochemical methods (potentiodynamic polarization and electrochemical impedance spectroscopy (EIS)) were used to investigate the corrosion behaviour. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to examine the surface morphology.
Significant findings
After testing a range of concentrations in a 3.5 % NaCl medium, the highest level of inhibition (98 %) was obtained at 20 ppm, confirming the mixed action of the inhibitor with predominantly cathodic action. The inhibition mechanism involved physical adsorption on metal surfaces according to the Langmuir model, which enhances the corrosion-inhibiting ability; the extract forms a protective layer that successfully inhibits corrosion, as confirmed through electrochemical and surface analysis. These results demonstrate that the extract acts as a potent anticorrosive agent.
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.