面铣工具钢最小量润滑的爆泡雾化方法性能实验研究

IF 6 Q1 ENGINEERING, MULTIDISCIPLINARY Results in Engineering Pub Date : 2024-09-15 DOI:10.1016/j.rineng.2024.102903
Muhammad Rizal , Amir Zaki Mubarak , Jaharah A. Ghani
{"title":"面铣工具钢最小量润滑的爆泡雾化方法性能实验研究","authors":"Muhammad Rizal ,&nbsp;Amir Zaki Mubarak ,&nbsp;Jaharah A. Ghani","doi":"10.1016/j.rineng.2024.102903","DOIUrl":null,"url":null,"abstract":"<div><p>The metal cutting industry faces challenges in machining hard materials due to high forces and temperatures. This paper introduces bubble-bursting atomization minimum quantity lubrication (BBA-MQL), a novel MQL technique that generates fine biodegradable oil mists for cooling and lubrication. Although the initial results of BBA-MQL are promising, there has not been a comprehensive investigation into its use in machining hard materials, specifically tool steels. Therefore, this study focused on the applicability of BBA-MQL in face milling of AISI P20 + Ni tool steel in comparison with dry cutting and conventional MQL using commercial and vegetable oil. The machining tests were performed at three cutting speeds (50, 80, and 110 m/min), fixed cutting depth (0.2 mm), and feed rate (0.15 mm/tooth). The performance is evaluated by measuring the cutting force, surface quality, cutting temperature, and tool wear. It was found that BBA-MQL decreased cutting force and surface roughness considerably, with the average reductions being 23.2 % and 49.8 % compared with the conventional minimum quantity lubrication. The highest cutting speed of 110 m/min was preferred for achieving the lowest roughness value and cutting force when milling tool steel P20 + Ni. Furthermore, BBA-MQL with castor oil proved more effective compared to conventional MQL in reducing cutting force, showing improved surface finish, reduced cutting temperature, and delayed tool wear.</p></div>","PeriodicalId":36919,"journal":{"name":"Results in Engineering","volume":"24 ","pages":"Article 102903"},"PeriodicalIF":6.0000,"publicationDate":"2024-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590123024011587/pdfft?md5=e6f9d3ca427ddbe28d349fd69ce551fd&pid=1-s2.0-S2590123024011587-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation on performance of bubble-bursting atomization methods for minimum quantity lubrication in face milling tool steel\",\"authors\":\"Muhammad Rizal ,&nbsp;Amir Zaki Mubarak ,&nbsp;Jaharah A. Ghani\",\"doi\":\"10.1016/j.rineng.2024.102903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The metal cutting industry faces challenges in machining hard materials due to high forces and temperatures. This paper introduces bubble-bursting atomization minimum quantity lubrication (BBA-MQL), a novel MQL technique that generates fine biodegradable oil mists for cooling and lubrication. Although the initial results of BBA-MQL are promising, there has not been a comprehensive investigation into its use in machining hard materials, specifically tool steels. Therefore, this study focused on the applicability of BBA-MQL in face milling of AISI P20 + Ni tool steel in comparison with dry cutting and conventional MQL using commercial and vegetable oil. The machining tests were performed at three cutting speeds (50, 80, and 110 m/min), fixed cutting depth (0.2 mm), and feed rate (0.15 mm/tooth). The performance is evaluated by measuring the cutting force, surface quality, cutting temperature, and tool wear. It was found that BBA-MQL decreased cutting force and surface roughness considerably, with the average reductions being 23.2 % and 49.8 % compared with the conventional minimum quantity lubrication. The highest cutting speed of 110 m/min was preferred for achieving the lowest roughness value and cutting force when milling tool steel P20 + Ni. Furthermore, BBA-MQL with castor oil proved more effective compared to conventional MQL in reducing cutting force, showing improved surface finish, reduced cutting temperature, and delayed tool wear.</p></div>\",\"PeriodicalId\":36919,\"journal\":{\"name\":\"Results in Engineering\",\"volume\":\"24 \",\"pages\":\"Article 102903\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590123024011587/pdfft?md5=e6f9d3ca427ddbe28d349fd69ce551fd&pid=1-s2.0-S2590123024011587-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590123024011587\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590123024011587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金属切削行业在加工硬质材料时面临着高力和高温的挑战。本文介绍了气泡爆破雾化最小量润滑(BBA-MQL),这是一种新型 MQL 技术,可产生用于冷却和润滑的生物可降解油雾。虽然 BBA-MQL 的初步结果令人鼓舞,但尚未对其在加工硬质材料(特别是工具钢)中的应用进行全面调查。因此,本研究将重点放在 BBA-MQL 在 AISI P20 + Ni 工具钢端面铣削中的适用性上,并与干切削和使用商业油和植物油的传统 MQL 进行了比较。加工测试在三种切削速度(50、80 和 110 米/分钟)、固定切削深度(0.2 毫米)和进给率(0.15 毫米/齿)下进行。通过测量切削力、表面质量、切削温度和刀具磨损来评估其性能。结果发现,BBA-MQL 大大降低了切削力和表面粗糙度,与传统的最小量润滑相比,平均降低了 23.2 % 和 49.8 %。在铣削工具钢 P20 + Ni 时,110 米/分钟的最高切削速度可获得最低的粗糙度值和切削力。此外,与传统的 MQL 相比,使用蓖麻油的 BBA-MQL 在降低切削力、改善表面光洁度、降低切削温度和延迟刀具磨损方面更为有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental investigation on performance of bubble-bursting atomization methods for minimum quantity lubrication in face milling tool steel

The metal cutting industry faces challenges in machining hard materials due to high forces and temperatures. This paper introduces bubble-bursting atomization minimum quantity lubrication (BBA-MQL), a novel MQL technique that generates fine biodegradable oil mists for cooling and lubrication. Although the initial results of BBA-MQL are promising, there has not been a comprehensive investigation into its use in machining hard materials, specifically tool steels. Therefore, this study focused on the applicability of BBA-MQL in face milling of AISI P20 + Ni tool steel in comparison with dry cutting and conventional MQL using commercial and vegetable oil. The machining tests were performed at three cutting speeds (50, 80, and 110 m/min), fixed cutting depth (0.2 mm), and feed rate (0.15 mm/tooth). The performance is evaluated by measuring the cutting force, surface quality, cutting temperature, and tool wear. It was found that BBA-MQL decreased cutting force and surface roughness considerably, with the average reductions being 23.2 % and 49.8 % compared with the conventional minimum quantity lubrication. The highest cutting speed of 110 m/min was preferred for achieving the lowest roughness value and cutting force when milling tool steel P20 + Ni. Furthermore, BBA-MQL with castor oil proved more effective compared to conventional MQL in reducing cutting force, showing improved surface finish, reduced cutting temperature, and delayed tool wear.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Engineering
Results in Engineering Engineering-Engineering (all)
CiteScore
5.80
自引率
34.00%
发文量
441
审稿时长
47 days
期刊最新文献
Nano biosensors: Classification, electrochemistry, nanostructures, and optical properties Autoclaved aerated concrete in reinforced building applications: A systematic review of AAC/RAAC in the last 40+ years An overview of the research on the correlation between solar energy utilization potential and spatial morphology Photonics in offshore wind energy system development: A systematic review Advancements and applications of smart contact lenses: A comprehensive review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1