3 微米波长的全固态连续波模式锁定 Er:Lu2O3 激光器

IF 4.6 2区 物理与天体物理 Q1 OPTICS Optics and Laser Technology Pub Date : 2024-09-16 DOI:10.1016/j.optlastec.2024.111787
{"title":"3 微米波长的全固态连续波模式锁定 Er:Lu2O3 激光器","authors":"","doi":"10.1016/j.optlastec.2024.111787","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we demonstrated stable continuous-wave passively mode-locked operation of an Er:Lu<sub>2</sub>O<sub>3</sub> laser at 3 µm, utilizing a semiconductor saturable absorber mirror (SESAM). By operating the laser in a dry nitrogen environment and utilizing a thermoelectric cooler (TEC) temperature control device to mitigate the thermal effects of Er:Lu<sub>2</sub>O<sub>3</sub> and enhance laser stability, we further compensated for group delay dispersion within the laser cavity through chirped mirrors, an shortest pulse duration of 12.0 ps at a average output power of 150 mW was achieved, which occurred at a center wavelength of 2844 nm, and a pulse repetition rate of 83.5 MHz. Additionally, we achieved a maximum continuous-wave mode-locked output power of 213 mW at an absorbed pump power of 8.3 W, equivalent to a pulse energy of 1.3 nJ. The RF spectrum analysis of the pulse train indicated a high SNR of nearly 70 dB, signifying excellent stability. To the best of our knowledge, This is the first report on the realization of an ultrashort pulse width mode-locked Er:Lu<sub>2</sub>O<sub>3</sub> laser in the mid-infrared band.</p></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"All-solid-state continuous-wave mode-locked Er:Lu2O3 laser at 3 µm\",\"authors\":\"\",\"doi\":\"10.1016/j.optlastec.2024.111787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we demonstrated stable continuous-wave passively mode-locked operation of an Er:Lu<sub>2</sub>O<sub>3</sub> laser at 3 µm, utilizing a semiconductor saturable absorber mirror (SESAM). By operating the laser in a dry nitrogen environment and utilizing a thermoelectric cooler (TEC) temperature control device to mitigate the thermal effects of Er:Lu<sub>2</sub>O<sub>3</sub> and enhance laser stability, we further compensated for group delay dispersion within the laser cavity through chirped mirrors, an shortest pulse duration of 12.0 ps at a average output power of 150 mW was achieved, which occurred at a center wavelength of 2844 nm, and a pulse repetition rate of 83.5 MHz. Additionally, we achieved a maximum continuous-wave mode-locked output power of 213 mW at an absorbed pump power of 8.3 W, equivalent to a pulse energy of 1.3 nJ. The RF spectrum analysis of the pulse train indicated a high SNR of nearly 70 dB, signifying excellent stability. To the best of our knowledge, This is the first report on the realization of an ultrashort pulse width mode-locked Er:Lu<sub>2</sub>O<sub>3</sub> laser in the mid-infrared band.</p></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224012453\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012453","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们利用半导体可饱和吸收镜 (SESAM) 演示了 3 µm 波长的 Er:Lu2O3 激光器的稳定连续波被动模式锁定运行。我们通过啁啾镜进一步补偿了激光腔内的群延迟色散,在中心波长为 2844 nm、脉冲重复率为 83.5 MHz 时,以 150 mW 的平均输出功率实现了 12.0 ps 的最短脉冲持续时间。此外,在吸收泵功率为 8.3 W 时,我们实现了 213 mW 的最大连续波锁相输出功率,相当于 1.3 nJ 的脉冲能量。对脉冲序列的射频频谱分析表明,信噪比高达近 70 dB,这标志着出色的稳定性。据我们所知,这是首次报道在中红外波段实现超短脉宽模式锁定的 Er:Lu2O3 激光器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
All-solid-state continuous-wave mode-locked Er:Lu2O3 laser at 3 µm

In this paper, we demonstrated stable continuous-wave passively mode-locked operation of an Er:Lu2O3 laser at 3 µm, utilizing a semiconductor saturable absorber mirror (SESAM). By operating the laser in a dry nitrogen environment and utilizing a thermoelectric cooler (TEC) temperature control device to mitigate the thermal effects of Er:Lu2O3 and enhance laser stability, we further compensated for group delay dispersion within the laser cavity through chirped mirrors, an shortest pulse duration of 12.0 ps at a average output power of 150 mW was achieved, which occurred at a center wavelength of 2844 nm, and a pulse repetition rate of 83.5 MHz. Additionally, we achieved a maximum continuous-wave mode-locked output power of 213 mW at an absorbed pump power of 8.3 W, equivalent to a pulse energy of 1.3 nJ. The RF spectrum analysis of the pulse train indicated a high SNR of nearly 70 dB, signifying excellent stability. To the best of our knowledge, This is the first report on the realization of an ultrashort pulse width mode-locked Er:Lu2O3 laser in the mid-infrared band.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
10.00%
发文量
1060
审稿时长
3.4 months
期刊介绍: Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication. The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas: •development in all types of lasers •developments in optoelectronic devices and photonics •developments in new photonics and optical concepts •developments in conventional optics, optical instruments and components •techniques of optical metrology, including interferometry and optical fibre sensors •LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow •applications of lasers to materials processing, optical NDT display (including holography) and optical communication •research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume) •developments in optical computing and optical information processing •developments in new optical materials •developments in new optical characterization methods and techniques •developments in quantum optics •developments in light assisted micro and nanofabrication methods and techniques •developments in nanophotonics and biophotonics •developments in imaging processing and systems
期刊最新文献
Control of photothermal liquid jets through microbubble Regulation: Fundamental mechanisms and Developing Strategies Multi-parameter reconstruction of interference harmonics by effective tuning combination selection and sampling boundary fitting Semantic ghost imaging based on semantic coding Enhanced beam quality of high-energy lasers utilizing fused silica as an all-solid-state SBS-PCM Efficient high-power 1.9 µm picosecond Raman laser in H2-filled hollow-core fiber without generation of rotational lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1