利用便携式 X 射线荧光原位测定大豆叶片的营养状况:数据收集和预测建模的初步方法

IF 4.4 1区 农林科学 Q1 AGRICULTURAL ENGINEERING Biosystems Engineering Pub Date : 2024-09-16 DOI:10.1016/j.biosystemseng.2024.09.011
Thainara Rebelo da Silva , Eduardo de Almeida , Tiago Rodrigues Tavares , Fábio Luiz Melquiades , Murilo Mesquita Baesso , Rachel Ferraz de Camargo , Marcos Henrique Feresin Gomes , Hudson Wallace Pereira de Carvalho
{"title":"利用便携式 X 射线荧光原位测定大豆叶片的营养状况:数据收集和预测建模的初步方法","authors":"Thainara Rebelo da Silva ,&nbsp;Eduardo de Almeida ,&nbsp;Tiago Rodrigues Tavares ,&nbsp;Fábio Luiz Melquiades ,&nbsp;Murilo Mesquita Baesso ,&nbsp;Rachel Ferraz de Camargo ,&nbsp;Marcos Henrique Feresin Gomes ,&nbsp;Hudson Wallace Pereira de Carvalho","doi":"10.1016/j.biosystemseng.2024.09.011","DOIUrl":null,"url":null,"abstract":"<div><p>X-ray fluorescence <strong>(</strong>XRF) analyses are fast, clean, non-destructive, and compatible with on-field operations, which are some advantages over traditional determinations using coupled plasma optical emission spectroscopy (ICP-OES). The aim of this study was to advance <em>in situ</em> XRF approaches for assessing the nutritional status of soybean leaves (<em>i.e.</em>, P, S, K, Ca, Mn, Fe, Cu and Zn). More specifically, we propose a protocol to ensure accuracy of in-field analysis and then evaluate the predictive performance of XRF via different data modelling strategies for macro- and micronutrient determination. Therefore, the XRF sensor dwell time of 60 s and the maximum time of 5 min were determined for the analysis of the leaves after leaf abscission, taking into account the influence of moisture loss on the signal intensity of the lighter elements. Regarding the predictive performance of XRF data for nutrients determination, multiple linear regression (MLR) models resulted in lower root mean square errors (RMSE) for P (433 mg kg<sup>−1</sup>), S (204 mg kg<sup>−1</sup>) and K (1957 mg kg<sup>−1</sup>); Partial least squares regression (PLS) for Ca (519 mg kg<sup>−1</sup>); and simple linear regression (SLR) for Mn (9 mg kg<sup>−1</sup>), Fe (18 mg kg<sup>−1</sup>), Zn (5 mg kg<sup>−1</sup>). The different modelling strategies exhibited equivalent RMSE for Cu (2 mg kg<sup>−1</sup>). These prediction errors are within a ±20% range, demonstrating that the <em>in situ</em> protocols developed in this research are useful for predicting the nutrients concentration in soybean leaves. Our study shows the possibility of using the <em>in situ</em> XRF sensor for the rapid and practical nutrients determination in soybean leaves, presenting good potential as a crop diagnosis tool.</p></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"247 ","pages":"Pages 143-152"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In situ determination of soybean leaves nutritional status by portable X-ray fluorescence: An initial approach for data collection and predictive modelling\",\"authors\":\"Thainara Rebelo da Silva ,&nbsp;Eduardo de Almeida ,&nbsp;Tiago Rodrigues Tavares ,&nbsp;Fábio Luiz Melquiades ,&nbsp;Murilo Mesquita Baesso ,&nbsp;Rachel Ferraz de Camargo ,&nbsp;Marcos Henrique Feresin Gomes ,&nbsp;Hudson Wallace Pereira de Carvalho\",\"doi\":\"10.1016/j.biosystemseng.2024.09.011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>X-ray fluorescence <strong>(</strong>XRF) analyses are fast, clean, non-destructive, and compatible with on-field operations, which are some advantages over traditional determinations using coupled plasma optical emission spectroscopy (ICP-OES). The aim of this study was to advance <em>in situ</em> XRF approaches for assessing the nutritional status of soybean leaves (<em>i.e.</em>, P, S, K, Ca, Mn, Fe, Cu and Zn). More specifically, we propose a protocol to ensure accuracy of in-field analysis and then evaluate the predictive performance of XRF via different data modelling strategies for macro- and micronutrient determination. Therefore, the XRF sensor dwell time of 60 s and the maximum time of 5 min were determined for the analysis of the leaves after leaf abscission, taking into account the influence of moisture loss on the signal intensity of the lighter elements. Regarding the predictive performance of XRF data for nutrients determination, multiple linear regression (MLR) models resulted in lower root mean square errors (RMSE) for P (433 mg kg<sup>−1</sup>), S (204 mg kg<sup>−1</sup>) and K (1957 mg kg<sup>−1</sup>); Partial least squares regression (PLS) for Ca (519 mg kg<sup>−1</sup>); and simple linear regression (SLR) for Mn (9 mg kg<sup>−1</sup>), Fe (18 mg kg<sup>−1</sup>), Zn (5 mg kg<sup>−1</sup>). The different modelling strategies exhibited equivalent RMSE for Cu (2 mg kg<sup>−1</sup>). These prediction errors are within a ±20% range, demonstrating that the <em>in situ</em> protocols developed in this research are useful for predicting the nutrients concentration in soybean leaves. Our study shows the possibility of using the <em>in situ</em> XRF sensor for the rapid and practical nutrients determination in soybean leaves, presenting good potential as a crop diagnosis tool.</p></div>\",\"PeriodicalId\":9173,\"journal\":{\"name\":\"Biosystems Engineering\",\"volume\":\"247 \",\"pages\":\"Pages 143-152\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosystems Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1537511024002137\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024002137","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

X 射线荧光 (XRF) 分析具有快速、清洁、无损、与现场操作兼容等特点,与使用耦合等离子体光学发射光谱 (ICP-OES) 进行的传统测定相比具有一些优势。本研究旨在推进原位 XRF 方法,以评估大豆叶片的营养状况(即 P、S、K、Ca、Mn、Fe、Cu 和 Zn)。更具体地说,我们提出了一个确保田间分析准确性的方案,然后通过不同的数据建模策略来评估 XRF 在宏观和微观营养素测定方面的预测性能。因此,考虑到水分流失对轻元素信号强度的影响,我们确定了在叶片脱落后对叶片进行分析时 XRF 传感器的停留时间为 60 秒,最长时间为 5 分钟。关于 XRF 数据对养分测定的预测性能,多元线性回归(MLR)模型对 P(433 毫克/千克-1)、S(204 毫克/千克-1)和 K(1957 毫克/千克-1)的均方根误差(RMSE)较低;部分最小二乘回归(PLS)对 Ca(519 毫克/千克-1)的均方根误差较低;简单线性回归(SLR)对 Mn(9 毫克/千克-1)、Fe(18 毫克/千克-1)和 Zn(5 毫克/千克-1)的均方根误差较低。对于铜(2 毫克千克-1),不同的建模策略表现出相同的均方根误差。这些预测误差都在±20%的范围内,表明本研究开发的原位规程可用于预测大豆叶片中的养分浓度。我们的研究表明,原位 XRF 传感器可用于快速、实用地测定大豆叶片中的营养成分,具有作为作物诊断工具的良好潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In situ determination of soybean leaves nutritional status by portable X-ray fluorescence: An initial approach for data collection and predictive modelling

X-ray fluorescence (XRF) analyses are fast, clean, non-destructive, and compatible with on-field operations, which are some advantages over traditional determinations using coupled plasma optical emission spectroscopy (ICP-OES). The aim of this study was to advance in situ XRF approaches for assessing the nutritional status of soybean leaves (i.e., P, S, K, Ca, Mn, Fe, Cu and Zn). More specifically, we propose a protocol to ensure accuracy of in-field analysis and then evaluate the predictive performance of XRF via different data modelling strategies for macro- and micronutrient determination. Therefore, the XRF sensor dwell time of 60 s and the maximum time of 5 min were determined for the analysis of the leaves after leaf abscission, taking into account the influence of moisture loss on the signal intensity of the lighter elements. Regarding the predictive performance of XRF data for nutrients determination, multiple linear regression (MLR) models resulted in lower root mean square errors (RMSE) for P (433 mg kg−1), S (204 mg kg−1) and K (1957 mg kg−1); Partial least squares regression (PLS) for Ca (519 mg kg−1); and simple linear regression (SLR) for Mn (9 mg kg−1), Fe (18 mg kg−1), Zn (5 mg kg−1). The different modelling strategies exhibited equivalent RMSE for Cu (2 mg kg−1). These prediction errors are within a ±20% range, demonstrating that the in situ protocols developed in this research are useful for predicting the nutrients concentration in soybean leaves. Our study shows the possibility of using the in situ XRF sensor for the rapid and practical nutrients determination in soybean leaves, presenting good potential as a crop diagnosis tool.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosystems Engineering
Biosystems Engineering 农林科学-农业工程
CiteScore
10.60
自引率
7.80%
发文量
239
审稿时长
53 days
期刊介绍: Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.
期刊最新文献
An application oriented all-round intelligent weeding machine with enhanced YOLOv5 Characterising vibration patterns of winter jujube trees to optimise automated fruit harvesting UAV multispectral remote sensing for agriculture: A comparative study of radiometric correction methods under varying illumination conditions Effects of polyphenol-rich extracts and compounds on methane and ammonia emissions from pig slurry during 28-day incubation Optimising maize threshing process with temporal proximity soft actor-critic deep reinforcement learning algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1