利用飞秒激光微处理技术实现的带级联蝶形多模干涉耦合器的三重器芯片

IF 4.6 2区 物理与天体物理 Q1 OPTICS Optics and Laser Technology Pub Date : 2024-09-17 DOI:10.1016/j.optlastec.2024.111753
{"title":"利用飞秒激光微处理技术实现的带级联蝶形多模干涉耦合器的三重器芯片","authors":"","doi":"10.1016/j.optlastec.2024.111753","DOIUrl":null,"url":null,"abstract":"<div><p>A triplexer chip utilizing three cascaded butterfly multimode interference (MMI) couplers to output three optical signals from their respective ports is proposed. The chip consists of a borosilicate glass substrate, a JA photoresist core layer, and an RZJ photoresist cladding. The beam propagation method (BPM) is used to design and optimize the chip. The femtosecond laser processing is investigated, and the chip is processed with a laser power of 1.6 mW and an ablation speed of 4 mm/s. Tests show that the chip meets the design specifications with a low insertion loss of 4.34 dB, an extinction ratio of more than 15 dB, a crosstalk of less than −15 dB, and a 3 dB bandwidth up to 76.8 nm.</p></div>","PeriodicalId":19511,"journal":{"name":"Optics and Laser Technology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A triplexer chip with cascaded butterfly multimode interference couplers by femtosecond laser microprocessing\",\"authors\":\"\",\"doi\":\"10.1016/j.optlastec.2024.111753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A triplexer chip utilizing three cascaded butterfly multimode interference (MMI) couplers to output three optical signals from their respective ports is proposed. The chip consists of a borosilicate glass substrate, a JA photoresist core layer, and an RZJ photoresist cladding. The beam propagation method (BPM) is used to design and optimize the chip. The femtosecond laser processing is investigated, and the chip is processed with a laser power of 1.6 mW and an ablation speed of 4 mm/s. Tests show that the chip meets the design specifications with a low insertion loss of 4.34 dB, an extinction ratio of more than 15 dB, a crosstalk of less than −15 dB, and a 3 dB bandwidth up to 76.8 nm.</p></div>\",\"PeriodicalId\":19511,\"journal\":{\"name\":\"Optics and Laser Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics and Laser Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0030399224012118\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics and Laser Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0030399224012118","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种三路光耦合器芯片,利用三个级联蝶形多模干涉(MMI)耦合器从各自端口输出三路光信号。该芯片由硼硅玻璃基板、JA 光刻胶核心层和 RZJ 光刻胶包层组成。芯片的设计和优化采用了光束传播法(BPM)。对飞秒激光加工进行了研究,芯片的加工激光功率为 1.6 mW,烧蚀速度为 4 mm/s。测试表明,该芯片符合设计规范,插入损耗低至 4.34 dB,消光比大于 15 dB,串扰小于 -15 dB,带宽达 3 dB,最高可达 76.8 nm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A triplexer chip with cascaded butterfly multimode interference couplers by femtosecond laser microprocessing

A triplexer chip utilizing three cascaded butterfly multimode interference (MMI) couplers to output three optical signals from their respective ports is proposed. The chip consists of a borosilicate glass substrate, a JA photoresist core layer, and an RZJ photoresist cladding. The beam propagation method (BPM) is used to design and optimize the chip. The femtosecond laser processing is investigated, and the chip is processed with a laser power of 1.6 mW and an ablation speed of 4 mm/s. Tests show that the chip meets the design specifications with a low insertion loss of 4.34 dB, an extinction ratio of more than 15 dB, a crosstalk of less than −15 dB, and a 3 dB bandwidth up to 76.8 nm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.50
自引率
10.00%
发文量
1060
审稿时长
3.4 months
期刊介绍: Optics & Laser Technology aims to provide a vehicle for the publication of a broad range of high quality research and review papers in those fields of scientific and engineering research appertaining to the development and application of the technology of optics and lasers. Papers describing original work in these areas are submitted to rigorous refereeing prior to acceptance for publication. The scope of Optics & Laser Technology encompasses, but is not restricted to, the following areas: •development in all types of lasers •developments in optoelectronic devices and photonics •developments in new photonics and optical concepts •developments in conventional optics, optical instruments and components •techniques of optical metrology, including interferometry and optical fibre sensors •LIDAR and other non-contact optical measurement techniques, including optical methods in heat and fluid flow •applications of lasers to materials processing, optical NDT display (including holography) and optical communication •research and development in the field of laser safety including studies of hazards resulting from the applications of lasers (laser safety, hazards of laser fume) •developments in optical computing and optical information processing •developments in new optical materials •developments in new optical characterization methods and techniques •developments in quantum optics •developments in light assisted micro and nanofabrication methods and techniques •developments in nanophotonics and biophotonics •developments in imaging processing and systems
期刊最新文献
Control of photothermal liquid jets through microbubble Regulation: Fundamental mechanisms and Developing Strategies Multi-parameter reconstruction of interference harmonics by effective tuning combination selection and sampling boundary fitting Semantic ghost imaging based on semantic coding Enhanced beam quality of high-energy lasers utilizing fused silica as an all-solid-state SBS-PCM Efficient high-power 1.9 µm picosecond Raman laser in H2-filled hollow-core fiber without generation of rotational lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1