通过可达性引导强化学习实现紧急避撞的自主车辆极端控制

IF 8 1区 工程技术 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Advanced Engineering Informatics Pub Date : 2024-09-16 DOI:10.1016/j.aei.2024.102801
Shiyue Zhao , Junzhi Zhang , Chengkun He , Yuan Ji , Heye Huang , Xiaohui Hou
{"title":"通过可达性引导强化学习实现紧急避撞的自主车辆极端控制","authors":"Shiyue Zhao ,&nbsp;Junzhi Zhang ,&nbsp;Chengkun He ,&nbsp;Yuan Ji ,&nbsp;Heye Huang ,&nbsp;Xiaohui Hou","doi":"10.1016/j.aei.2024.102801","DOIUrl":null,"url":null,"abstract":"<div><p>The emergency collision avoidance capabilities of autonomous vehicles (AVs) are crucial for enhancing their active safety performance, particularly in extreme scenarios where standard methods fall short. This study introduces an Extreme Maneuver Controller (EMC) for AVs, utilizing reachability-guided reinforcement learning (RL) to address these challenging situations. By applying pseudospectral methods, we solve the minimum backward reachable tube (Min-BRT) to identify regions where conventional avoidance maneuvers are infeasible, establishing a theoretical basis for triggering extreme maneuvers. A novel controller, employing reachability-guided RL, enables vehicles to execute extreme maneuvers to escape these critical regions. During training, the value function derived from the Min-BRT solution informs the initialization of the Critic networks, enhancing training efficiency. Real-world scenario-based experimental results with actual vehicles validate that the proposed policy, effectively executes beyond-the-limit maneuvers, mitigating collision risks under emergency condition. Furthermore, these extreme maneuvers are executed with minimal deviation from the original driving objectives, ensuring a smooth and stable transition upon completion of extreme maneuvers.</p></div>","PeriodicalId":50941,"journal":{"name":"Advanced Engineering Informatics","volume":null,"pages":null},"PeriodicalIF":8.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous vehicle extreme control for emergency collision avoidance via Reachability-Guided reinforcement learning\",\"authors\":\"Shiyue Zhao ,&nbsp;Junzhi Zhang ,&nbsp;Chengkun He ,&nbsp;Yuan Ji ,&nbsp;Heye Huang ,&nbsp;Xiaohui Hou\",\"doi\":\"10.1016/j.aei.2024.102801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The emergency collision avoidance capabilities of autonomous vehicles (AVs) are crucial for enhancing their active safety performance, particularly in extreme scenarios where standard methods fall short. This study introduces an Extreme Maneuver Controller (EMC) for AVs, utilizing reachability-guided reinforcement learning (RL) to address these challenging situations. By applying pseudospectral methods, we solve the minimum backward reachable tube (Min-BRT) to identify regions where conventional avoidance maneuvers are infeasible, establishing a theoretical basis for triggering extreme maneuvers. A novel controller, employing reachability-guided RL, enables vehicles to execute extreme maneuvers to escape these critical regions. During training, the value function derived from the Min-BRT solution informs the initialization of the Critic networks, enhancing training efficiency. Real-world scenario-based experimental results with actual vehicles validate that the proposed policy, effectively executes beyond-the-limit maneuvers, mitigating collision risks under emergency condition. Furthermore, these extreme maneuvers are executed with minimal deviation from the original driving objectives, ensuring a smooth and stable transition upon completion of extreme maneuvers.</p></div>\",\"PeriodicalId\":50941,\"journal\":{\"name\":\"Advanced Engineering Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Informatics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S147403462400449X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Informatics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S147403462400449X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

自动驾驶汽车(AV)的紧急避撞能力对于提高其主动安全性能至关重要,尤其是在标准方法无法满足的极端场景中。本研究为自动驾驶汽车引入了极端机动控制器(EMC),利用可达性引导的强化学习(RL)来应对这些具有挑战性的情况。通过应用伪光谱方法,我们求解了最小后向可达管(Min-BRT),从而确定了传统规避机动不可行的区域,为触发极限机动建立了理论基础。一种新型控制器采用可达性引导的 RL,使车辆能够执行极端机动以逃离这些临界区域。在训练过程中,从 Min-BRT 解决方案中得出的值函数为 Critic 网络的初始化提供了信息,从而提高了训练效率。使用实际车辆进行的基于真实场景的实验结果验证了所提出的策略能有效执行超限机动,从而降低紧急情况下的碰撞风险。此外,这些极限机动的执行与最初的驾驶目标偏差最小,确保了极限机动完成后的平稳过渡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Autonomous vehicle extreme control for emergency collision avoidance via Reachability-Guided reinforcement learning

The emergency collision avoidance capabilities of autonomous vehicles (AVs) are crucial for enhancing their active safety performance, particularly in extreme scenarios where standard methods fall short. This study introduces an Extreme Maneuver Controller (EMC) for AVs, utilizing reachability-guided reinforcement learning (RL) to address these challenging situations. By applying pseudospectral methods, we solve the minimum backward reachable tube (Min-BRT) to identify regions where conventional avoidance maneuvers are infeasible, establishing a theoretical basis for triggering extreme maneuvers. A novel controller, employing reachability-guided RL, enables vehicles to execute extreme maneuvers to escape these critical regions. During training, the value function derived from the Min-BRT solution informs the initialization of the Critic networks, enhancing training efficiency. Real-world scenario-based experimental results with actual vehicles validate that the proposed policy, effectively executes beyond-the-limit maneuvers, mitigating collision risks under emergency condition. Furthermore, these extreme maneuvers are executed with minimal deviation from the original driving objectives, ensuring a smooth and stable transition upon completion of extreme maneuvers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Informatics
Advanced Engineering Informatics 工程技术-工程:综合
CiteScore
12.40
自引率
18.20%
发文量
292
审稿时长
45 days
期刊介绍: Advanced Engineering Informatics is an international Journal that solicits research papers with an emphasis on 'knowledge' and 'engineering applications'. The Journal seeks original papers that report progress in applying methods of engineering informatics. These papers should have engineering relevance and help provide a scientific base for more reliable, spontaneous, and creative engineering decision-making. Additionally, papers should demonstrate the science of supporting knowledge-intensive engineering tasks and validate the generality, power, and scalability of new methods through rigorous evaluation, preferably both qualitatively and quantitatively. Abstracting and indexing for Advanced Engineering Informatics include Science Citation Index Expanded, Scopus and INSPEC.
期刊最新文献
A method for constructing an ergonomics evaluation indicator system for community aging services based on Kano-Delphi-CFA: A case study in China A temperature-sensitive points selection method for machine tool based on rough set and multi-objective adaptive hybrid evolutionary algorithm Enhancing EEG artifact removal through neural architecture search with large kernels Optimal design of an integrated inspection scheme with two adjustable sampling mechanisms for lot disposition A novel product shape design method integrating Kansei engineering and whale optimization algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1