Y 对 Cu-Zr-Mg-Y 合金微观结构和物理性质的影响

IF 3.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Vacuum Pub Date : 2024-09-14 DOI:10.1016/j.vacuum.2024.113651
{"title":"Y 对 Cu-Zr-Mg-Y 合金微观结构和物理性质的影响","authors":"","doi":"10.1016/j.vacuum.2024.113651","DOIUrl":null,"url":null,"abstract":"<div><p>This work presents the development of two novel Cu-Zr-Mg(Y) alloys. The alloys were prepared using vacuum melting and show good conductivity and mechanical properties after solution treatment+60 % cold rolling + aging at 450 °C for 60 min.</p><p>The measurement results reveal that the Cu-Zr-Mg alloy has a microhardness of 165 ± 5 HV, an electrical conductivity of 68.5 ± 0.2 % IACS and a tensile strength of 483 ± 15 MPa while the Cu-Zr-Mg-Y alloy has a microhardness of 172 ± 6 HV, an electrical conductivity of 67.9 ± 0.2 % IACS and a tensile strength of 503 ± 12 MPa.</p><p>The addition of Y promotes the recovery and recrystallization of the alloys and causes the refinement of the grain size. The appearance of copper texture is the reason why the Cu-Zr-Mg-Y alloy has higher tensile strength in the rolling direction. The main phases of the Cu-Zr-Mg-Y alloy consist of Cu<sub>5</sub>Zr and a small amount of Mg<sub>24</sub>Y<sub>5</sub>. The increment in precipitation strengthening is primarily attributed to the coherent Cu<sub>5</sub>Zr phase within the matrix.</p></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Y on the microstructure and physical properties of Cu-Zr-Mg-Y alloys\",\"authors\":\"\",\"doi\":\"10.1016/j.vacuum.2024.113651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This work presents the development of two novel Cu-Zr-Mg(Y) alloys. The alloys were prepared using vacuum melting and show good conductivity and mechanical properties after solution treatment+60 % cold rolling + aging at 450 °C for 60 min.</p><p>The measurement results reveal that the Cu-Zr-Mg alloy has a microhardness of 165 ± 5 HV, an electrical conductivity of 68.5 ± 0.2 % IACS and a tensile strength of 483 ± 15 MPa while the Cu-Zr-Mg-Y alloy has a microhardness of 172 ± 6 HV, an electrical conductivity of 67.9 ± 0.2 % IACS and a tensile strength of 503 ± 12 MPa.</p><p>The addition of Y promotes the recovery and recrystallization of the alloys and causes the refinement of the grain size. The appearance of copper texture is the reason why the Cu-Zr-Mg-Y alloy has higher tensile strength in the rolling direction. The main phases of the Cu-Zr-Mg-Y alloy consist of Cu<sub>5</sub>Zr and a small amount of Mg<sub>24</sub>Y<sub>5</sub>. The increment in precipitation strengthening is primarily attributed to the coherent Cu<sub>5</sub>Zr phase within the matrix.</p></div>\",\"PeriodicalId\":23559,\"journal\":{\"name\":\"Vacuum\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vacuum\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0042207X24006973\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24006973","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作展示了两种新型铜-Zr-镁(Y)合金的开发。测量结果显示,Cu-Zr-Mg 合金的显微硬度为 165 ± 5 HV,导电率为 68.5 ± 0.2 % IACS,抗拉强度为 483 ± 15 MPa。测量结果显示,Cu-Zr-Mg 合金的显微硬度为 165 ± 5 HV,电导率为 68.5 ± 0.2 % IACS,抗拉强度为 483 ± 15 MPa,而 Cu-Zr-Mg-Y 合金的显微硬度为 172 ± 6 HV,电导率为 67.9 ± 0.2 % IACS,抗拉强度为 503 ± 12 MPa。铜纹理的出现是 Cu-Zr-Mg-Y 合金在轧制方向上具有较高抗拉强度的原因。Cu-Zr-Mg-Y 合金的主要相由 Cu5Zr 和少量 Mg24Y5 组成。沉淀强化的增加主要归因于基体中相干的 Cu5Zr 相。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Y on the microstructure and physical properties of Cu-Zr-Mg-Y alloys

This work presents the development of two novel Cu-Zr-Mg(Y) alloys. The alloys were prepared using vacuum melting and show good conductivity and mechanical properties after solution treatment+60 % cold rolling + aging at 450 °C for 60 min.

The measurement results reveal that the Cu-Zr-Mg alloy has a microhardness of 165 ± 5 HV, an electrical conductivity of 68.5 ± 0.2 % IACS and a tensile strength of 483 ± 15 MPa while the Cu-Zr-Mg-Y alloy has a microhardness of 172 ± 6 HV, an electrical conductivity of 67.9 ± 0.2 % IACS and a tensile strength of 503 ± 12 MPa.

The addition of Y promotes the recovery and recrystallization of the alloys and causes the refinement of the grain size. The appearance of copper texture is the reason why the Cu-Zr-Mg-Y alloy has higher tensile strength in the rolling direction. The main phases of the Cu-Zr-Mg-Y alloy consist of Cu5Zr and a small amount of Mg24Y5. The increment in precipitation strengthening is primarily attributed to the coherent Cu5Zr phase within the matrix.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Vacuum
Vacuum 工程技术-材料科学:综合
CiteScore
6.80
自引率
17.50%
发文量
0
审稿时长
34 days
期刊介绍: Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences. A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below. The scope of the journal includes: 1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes). 2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis. 3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification. 4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.
期刊最新文献
Ethanol recognition based on carbon quantum dots sensitized Ti3C2Tx MXene and its enhancement effect of ultraviolet condition under low temperature Overall fabrication of uniform BN interphase on 2.5D-SiC fabric via precursor-derived methods Microstructure evolution and mechanical properties of brazing seam of SiCp/Al composites-TC4 titanium alloy composite structure with different La content Microstructure evolution, mechanical properties, and corrosion behavior of in-situ TiC/TC4 composites through Mo addition Determination of fast electrons energy absorbed in the air by measuring the concentration of ozone synthesized in electron beam plasma
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1