{"title":"多尺度材料建模的高效分层贝叶斯框架","authors":"","doi":"10.1016/j.compstruct.2024.118570","DOIUrl":null,"url":null,"abstract":"<div><p>This paper introduces a novel approach to infer the material properties of multiscale material systems through a variety of experimental scenarios. We utilize the hierarchical Bayesian paradigm which enables us to integrate multiple experimental data at different length scales and/or different material compositions, in a systematic way. Specifically, a probabilistic model is constructed which implements the Transitional Markov Chain Monte Carlo method to extract samples from the posterior distributions of both the multiscale model parameters and the hierarchical hyperparameters. The posterior distribution of the hyperparameters encapsulates the information from all the different experiments and it is utilized to derive an informed set of physical parameters, which can be used for making predictions in future material models. Feed forward neural networks play a crucial role in mitigating the computational effort of implementing the hierarchical Bayesian analysis on top of multiscale nonlinear computational homogenization analyses. Their purpose is to learn and accurately emulate the nonlinear constitutive law across multiple length scales. The proposed methodology is demonstrated on a case study of carbon nanotube (CNT) reinforced cementitious material configurations through the investigation of the CNT interfacial mechanical behavior. The hierarchical Bayesian framework is applied on a set of measurements gathered from independent literature experiments performed on dissimilar material compositions on the macroscopic structural scale.</p></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0263822324006986/pdfft?md5=44a37f0b40d08ee4669a694117ff8f81&pid=1-s2.0-S0263822324006986-main.pdf","citationCount":"0","resultStr":"{\"title\":\"An efficient hierarchical Bayesian framework for multiscale material modeling\",\"authors\":\"\",\"doi\":\"10.1016/j.compstruct.2024.118570\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper introduces a novel approach to infer the material properties of multiscale material systems through a variety of experimental scenarios. We utilize the hierarchical Bayesian paradigm which enables us to integrate multiple experimental data at different length scales and/or different material compositions, in a systematic way. Specifically, a probabilistic model is constructed which implements the Transitional Markov Chain Monte Carlo method to extract samples from the posterior distributions of both the multiscale model parameters and the hierarchical hyperparameters. The posterior distribution of the hyperparameters encapsulates the information from all the different experiments and it is utilized to derive an informed set of physical parameters, which can be used for making predictions in future material models. Feed forward neural networks play a crucial role in mitigating the computational effort of implementing the hierarchical Bayesian analysis on top of multiscale nonlinear computational homogenization analyses. Their purpose is to learn and accurately emulate the nonlinear constitutive law across multiple length scales. The proposed methodology is demonstrated on a case study of carbon nanotube (CNT) reinforced cementitious material configurations through the investigation of the CNT interfacial mechanical behavior. The hierarchical Bayesian framework is applied on a set of measurements gathered from independent literature experiments performed on dissimilar material compositions on the macroscopic structural scale.</p></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0263822324006986/pdfft?md5=44a37f0b40d08ee4669a694117ff8f81&pid=1-s2.0-S0263822324006986-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822324006986\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324006986","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
An efficient hierarchical Bayesian framework for multiscale material modeling
This paper introduces a novel approach to infer the material properties of multiscale material systems through a variety of experimental scenarios. We utilize the hierarchical Bayesian paradigm which enables us to integrate multiple experimental data at different length scales and/or different material compositions, in a systematic way. Specifically, a probabilistic model is constructed which implements the Transitional Markov Chain Monte Carlo method to extract samples from the posterior distributions of both the multiscale model parameters and the hierarchical hyperparameters. The posterior distribution of the hyperparameters encapsulates the information from all the different experiments and it is utilized to derive an informed set of physical parameters, which can be used for making predictions in future material models. Feed forward neural networks play a crucial role in mitigating the computational effort of implementing the hierarchical Bayesian analysis on top of multiscale nonlinear computational homogenization analyses. Their purpose is to learn and accurately emulate the nonlinear constitutive law across multiple length scales. The proposed methodology is demonstrated on a case study of carbon nanotube (CNT) reinforced cementitious material configurations through the investigation of the CNT interfacial mechanical behavior. The hierarchical Bayesian framework is applied on a set of measurements gathered from independent literature experiments performed on dissimilar material compositions on the macroscopic structural scale.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.