Baozhen Feng , Chunshuang Ding , Peiqian Li , Li Fu
{"title":"联合应用内生菌 K1 和脱氢乙酸钠可减轻葡萄采后灰霉病的危害","authors":"Baozhen Feng , Chunshuang Ding , Peiqian Li , Li Fu","doi":"10.1016/j.fm.2024.104637","DOIUrl":null,"url":null,"abstract":"<div><p><em>Botrytis cinerea</em>, which causes postharvest gray mold, is a primary pathogen that limits grape shelf-life and consumption and causes substantial yield loss worldwide. The combined use of biocontrol agents and food additives has attracted increasing interest. The effects of combined treatment with the endophyte <em>Bacillus subtilis</em> K1 and sodium dehydroacetate (SD) on the occurrence of gray mold and maintenance of grape fruit quality were studied. Treatment with a K1 suspension (1 × 10<sup>8</sup> CFU/ml) combined with 0.32 g/L SD resulted in markedly improved control of <em>B. cinerea</em> on grapes. The disease incidence and severity in the groups treated with K1 alone or in combination with SD were significantly lower than those in the control groups (P < 0.05) when the mixtures were applied 2 h after pathogen inoculation. Moreover, application of the mixture could maintain the appearance, firmness, total soluble solid (TSS) content and titratable acidity (TA) of grape fruit. Furthermore, the combination triggered increases in the activities of defense-related enzymes such as peroxidase (POD), phenylalanine ammonia lyase (PAL), catalase (CAT), superoxide dismutase (SOD) and polyphenol oxidase (PPO). Additionally, it could increase the vitamin C content. Thus, appropriate combinations of biocontrol agents and chemical reagents can provide effective protection against postharvest decay.</p></div>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combined application of the endophyte Bacillus K1 and sodium dehydroacetate alleviates postharvest gray mold in grapes\",\"authors\":\"Baozhen Feng , Chunshuang Ding , Peiqian Li , Li Fu\",\"doi\":\"10.1016/j.fm.2024.104637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Botrytis cinerea</em>, which causes postharvest gray mold, is a primary pathogen that limits grape shelf-life and consumption and causes substantial yield loss worldwide. The combined use of biocontrol agents and food additives has attracted increasing interest. The effects of combined treatment with the endophyte <em>Bacillus subtilis</em> K1 and sodium dehydroacetate (SD) on the occurrence of gray mold and maintenance of grape fruit quality were studied. Treatment with a K1 suspension (1 × 10<sup>8</sup> CFU/ml) combined with 0.32 g/L SD resulted in markedly improved control of <em>B. cinerea</em> on grapes. The disease incidence and severity in the groups treated with K1 alone or in combination with SD were significantly lower than those in the control groups (P < 0.05) when the mixtures were applied 2 h after pathogen inoculation. Moreover, application of the mixture could maintain the appearance, firmness, total soluble solid (TSS) content and titratable acidity (TA) of grape fruit. Furthermore, the combination triggered increases in the activities of defense-related enzymes such as peroxidase (POD), phenylalanine ammonia lyase (PAL), catalase (CAT), superoxide dismutase (SOD) and polyphenol oxidase (PPO). Additionally, it could increase the vitamin C content. Thus, appropriate combinations of biocontrol agents and chemical reagents can provide effective protection against postharvest decay.</p></div>\",\"PeriodicalId\":12399,\"journal\":{\"name\":\"Food microbiology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0740002024001758\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0740002024001758","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Combined application of the endophyte Bacillus K1 and sodium dehydroacetate alleviates postharvest gray mold in grapes
Botrytis cinerea, which causes postharvest gray mold, is a primary pathogen that limits grape shelf-life and consumption and causes substantial yield loss worldwide. The combined use of biocontrol agents and food additives has attracted increasing interest. The effects of combined treatment with the endophyte Bacillus subtilis K1 and sodium dehydroacetate (SD) on the occurrence of gray mold and maintenance of grape fruit quality were studied. Treatment with a K1 suspension (1 × 108 CFU/ml) combined with 0.32 g/L SD resulted in markedly improved control of B. cinerea on grapes. The disease incidence and severity in the groups treated with K1 alone or in combination with SD were significantly lower than those in the control groups (P < 0.05) when the mixtures were applied 2 h after pathogen inoculation. Moreover, application of the mixture could maintain the appearance, firmness, total soluble solid (TSS) content and titratable acidity (TA) of grape fruit. Furthermore, the combination triggered increases in the activities of defense-related enzymes such as peroxidase (POD), phenylalanine ammonia lyase (PAL), catalase (CAT), superoxide dismutase (SOD) and polyphenol oxidase (PPO). Additionally, it could increase the vitamin C content. Thus, appropriate combinations of biocontrol agents and chemical reagents can provide effective protection against postharvest decay.
期刊介绍:
Food Microbiology publishes original research articles, short communications, review papers, letters, news items and book reviews dealing with all aspects of the microbiology of foods. The editors aim to publish manuscripts of the highest quality which are both relevant and applicable to the broad field covered by the journal. Studies must be novel, have a clear connection to food microbiology, and be of general interest to the international community of food microbiologists. The editors make every effort to ensure rapid and fair reviews, resulting in timely publication of accepted manuscripts.