Enhancing wine malolactic fermentation: Variable effect of yeast mannoproteins on Oenococcus oeni strains.

IF 4.5 1区 农林科学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Food microbiology Pub Date : 2025-04-01 Epub Date: 2024-11-27 DOI:10.1016/j.fm.2024.104689
Paloma Toraño, Alba Martín-García, Albert Bordons, Nicolas Rozès, Cristina Reguant
{"title":"Enhancing wine malolactic fermentation: Variable effect of yeast mannoproteins on Oenococcus oeni strains.","authors":"Paloma Toraño, Alba Martín-García, Albert Bordons, Nicolas Rozès, Cristina Reguant","doi":"10.1016/j.fm.2024.104689","DOIUrl":null,"url":null,"abstract":"<p><p>Lactic acid bacteria (LAB), principally Oenococcus oeni, play crucial roles in wine production, contributing to the transformation of L-malic acid into L-lactic acid during malolactic fermentation (MLF). This fermentation is influenced by different factors, including the initial LAB population and wine stress factors, such as nutrient availability. Yeast mannoproteins can enhance LAB survival in wine. This study explored in model conditions the impact of a commercial mannoprotein extract on MLF dynamics in ten O. oeni strains. The results revealed strain-specific responses in fermentation kinetics and mannoprotein utilization. Mannoprotein addition influenced MLF outcomes, depending on the strain and concentration. The variability in MLF confirmed different technological aptitude of the strains used. The α-mannosidase enzymatic activity was determined and showed higher values in the supernatant than in whole cells. Moreover, α-mannosidase activity varied among strains, suggesting differential regulation in response to fermentation conditions. These findings highlight the importance of understanding mannoprotein interactions with O. oeni for optimizing MLF efficiency and enhancing wine quality. Further research under cellar conditions is needed to evaluate the potential of yeast mannoproteins to promote MLF.</p>","PeriodicalId":12399,"journal":{"name":"Food microbiology","volume":"127 ","pages":"104689"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food microbiology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.fm.2024.104689","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Lactic acid bacteria (LAB), principally Oenococcus oeni, play crucial roles in wine production, contributing to the transformation of L-malic acid into L-lactic acid during malolactic fermentation (MLF). This fermentation is influenced by different factors, including the initial LAB population and wine stress factors, such as nutrient availability. Yeast mannoproteins can enhance LAB survival in wine. This study explored in model conditions the impact of a commercial mannoprotein extract on MLF dynamics in ten O. oeni strains. The results revealed strain-specific responses in fermentation kinetics and mannoprotein utilization. Mannoprotein addition influenced MLF outcomes, depending on the strain and concentration. The variability in MLF confirmed different technological aptitude of the strains used. The α-mannosidase enzymatic activity was determined and showed higher values in the supernatant than in whole cells. Moreover, α-mannosidase activity varied among strains, suggesting differential regulation in response to fermentation conditions. These findings highlight the importance of understanding mannoprotein interactions with O. oeni for optimizing MLF efficiency and enhancing wine quality. Further research under cellar conditions is needed to evaluate the potential of yeast mannoproteins to promote MLF.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强葡萄酒的苹果酸-乳酸发酵:酵母甘露蛋白对 Oenococcus oeni 菌株的不同影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food microbiology
Food microbiology 工程技术-生物工程与应用微生物
CiteScore
11.30
自引率
3.80%
发文量
179
审稿时长
44 days
期刊介绍: Food Microbiology publishes original research articles, short communications, review papers, letters, news items and book reviews dealing with all aspects of the microbiology of foods. The editors aim to publish manuscripts of the highest quality which are both relevant and applicable to the broad field covered by the journal. Studies must be novel, have a clear connection to food microbiology, and be of general interest to the international community of food microbiologists. The editors make every effort to ensure rapid and fair reviews, resulting in timely publication of accepted manuscripts.
期刊最新文献
Interaction and cross-contamination potential of prepared beef steak isolates Pseudomonas weihenstephanensis and Macrococcus caseolyticus in biofilms of dual-species. Regulation of citrinin biosynthesis in Monascus purpureus: Impacts on growth, morphology, and pigments production. The investigation of the mechanism underlying variations in oxidative stress tolerance of Lacticaseibacillus paracasei resulting from fermentation methods through endogenous CRISPR-Cas9 editing methodology. Enhancing wine malolactic fermentation: Variable effect of yeast mannoproteins on Oenococcus oeni strains. Replacing preservative E 252 with powdered dried sumac (Rhus coriaria L.) fruits in “Suino Nero dei Nebrodi” salamis: Effects on microbiological, physicochemical, and antioxidant properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1