增强 GdNbO4-La2Zr2O7 材料的力学性能和铁弹性畴切换的原子尺度机制

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Scripta Materialia Pub Date : 2024-09-16 DOI:10.1016/j.scriptamat.2024.116374
Xuezhen Cao , Yizhe Li , Ying Chen , Gyn Brewster , David A. Hall , Sarah J. Haigh , João P. Martins , Ping Xiao
{"title":"增强 GdNbO4-La2Zr2O7 材料的力学性能和铁弹性畴切换的原子尺度机制","authors":"Xuezhen Cao ,&nbsp;Yizhe Li ,&nbsp;Ying Chen ,&nbsp;Gyn Brewster ,&nbsp;David A. Hall ,&nbsp;Sarah J. Haigh ,&nbsp;João P. Martins ,&nbsp;Ping Xiao","doi":"10.1016/j.scriptamat.2024.116374","DOIUrl":null,"url":null,"abstract":"<div><p>Optimization of mechanical properties in La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> (LZO) ceramics, composites and coatings is an on-going requirement for their practical application. Herein, the contribution of monoclinic (La, Gd)NbO<sub>4</sub> (m-LGNO) enhancement of fracture toughness by ∼56% reveals its capability to be a prominent toughening agent. Due to the ferroelastic nature of LGNO, ferroelastic switching takes place within the stress concentrated regions, giving rise to significant strain energy relaxation. Atomic-scale evidence reveals that ferroelastic 94°/86° domain switching can occur, yielding merged 94° domains and newly formed 86° domains. The relevant strains induced by ferroelastic domain switching are quantified up to 8.06% and 6.20% in shear and normal strain, respectively. Such domain switching strains highlight their contribution to accommodate external mechanical loading for the 50 mol% GNO-LZO composite. The results indicate that the unique ferroelastic nature and 94°/86° ferroelastic domain switching in m-LGNO cooperatively provide a significant toughening effect.</p></div>","PeriodicalId":423,"journal":{"name":"Scripta Materialia","volume":"255 ","pages":"Article 116374"},"PeriodicalIF":5.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1359646224004093/pdfft?md5=68e97147ad72d0053d287ebcf3722843&pid=1-s2.0-S1359646224004093-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced mechanical properties and atomic-scale mechanisms of ferroelastic domain switching for GdNbO4-La2Zr2O7 materials\",\"authors\":\"Xuezhen Cao ,&nbsp;Yizhe Li ,&nbsp;Ying Chen ,&nbsp;Gyn Brewster ,&nbsp;David A. Hall ,&nbsp;Sarah J. Haigh ,&nbsp;João P. Martins ,&nbsp;Ping Xiao\",\"doi\":\"10.1016/j.scriptamat.2024.116374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Optimization of mechanical properties in La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> (LZO) ceramics, composites and coatings is an on-going requirement for their practical application. Herein, the contribution of monoclinic (La, Gd)NbO<sub>4</sub> (m-LGNO) enhancement of fracture toughness by ∼56% reveals its capability to be a prominent toughening agent. Due to the ferroelastic nature of LGNO, ferroelastic switching takes place within the stress concentrated regions, giving rise to significant strain energy relaxation. Atomic-scale evidence reveals that ferroelastic 94°/86° domain switching can occur, yielding merged 94° domains and newly formed 86° domains. The relevant strains induced by ferroelastic domain switching are quantified up to 8.06% and 6.20% in shear and normal strain, respectively. Such domain switching strains highlight their contribution to accommodate external mechanical loading for the 50 mol% GNO-LZO composite. The results indicate that the unique ferroelastic nature and 94°/86° ferroelastic domain switching in m-LGNO cooperatively provide a significant toughening effect.</p></div>\",\"PeriodicalId\":423,\"journal\":{\"name\":\"Scripta Materialia\",\"volume\":\"255 \",\"pages\":\"Article 116374\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1359646224004093/pdfft?md5=68e97147ad72d0053d287ebcf3722843&pid=1-s2.0-S1359646224004093-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scripta Materialia\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1359646224004093\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scripta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359646224004093","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

优化 La2Zr2O7 (LZO) 陶瓷、复合材料和涂层的机械性能是其实际应用的一项长期要求。在这里,单斜(La, Gd)NbO4(m-LGNO)将断裂韧性提高了 ∼ 56%,这显示了它作为一种重要增韧剂的能力。由于 LGNO 具有铁弹性,因此在应力集中区域会发生铁弹性转换,从而产生显著的应变能松弛。原子尺度证据显示,94°/86°铁弹性畴切换会发生,产生合并的 94°畴和新形成的 86°畴。铁弹性畴切换引起的相关应变在剪切应变和法向应变中的定量分别高达 8.06% 和 6.20%。这种畴切换应变凸显了 50 mol% GNO-LZO 复合材料在适应外部机械负载方面的贡献。结果表明,m-LGNO 中独特的铁弹性性质和 94°/86° 铁弹性畴切换共同提供了显著的增韧效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhanced mechanical properties and atomic-scale mechanisms of ferroelastic domain switching for GdNbO4-La2Zr2O7 materials

Optimization of mechanical properties in La2Zr2O7 (LZO) ceramics, composites and coatings is an on-going requirement for their practical application. Herein, the contribution of monoclinic (La, Gd)NbO4 (m-LGNO) enhancement of fracture toughness by ∼56% reveals its capability to be a prominent toughening agent. Due to the ferroelastic nature of LGNO, ferroelastic switching takes place within the stress concentrated regions, giving rise to significant strain energy relaxation. Atomic-scale evidence reveals that ferroelastic 94°/86° domain switching can occur, yielding merged 94° domains and newly formed 86° domains. The relevant strains induced by ferroelastic domain switching are quantified up to 8.06% and 6.20% in shear and normal strain, respectively. Such domain switching strains highlight their contribution to accommodate external mechanical loading for the 50 mol% GNO-LZO composite. The results indicate that the unique ferroelastic nature and 94°/86° ferroelastic domain switching in m-LGNO cooperatively provide a significant toughening effect.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scripta Materialia
Scripta Materialia 工程技术-材料科学:综合
CiteScore
11.40
自引率
5.00%
发文量
581
审稿时长
34 days
期刊介绍: Scripta Materialia is a LETTERS journal of Acta Materialia, providing a forum for the rapid publication of short communications on the relationship between the structure and the properties of inorganic materials. The emphasis is on originality rather than incremental research. Short reports on the development of materials with novel or substantially improved properties are also welcomed. Emphasis is on either the functional or mechanical behavior of metals, ceramics and semiconductors at all length scales.
期刊最新文献
Effect of B4C addition on the microstructure and mechanical properties of 304L austenitic stainless steel fabricated using laser powder bed fusion Modelling the evolution of microstructural bands in a martensite/austenite Q&P-processed stainless steel Editorial Board Strain glass state in Ni50.3Ti29.7Hf20 high-temperature shape memory alloy An in-situ Raman spectroscopy investigation of the oxidation of proton irradiated and cold-worked 304L stainless steel in oxygenated water at 300°C
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1