用于快速多视角聚类的双共识锚点学习

Yalan Qin;Chuan Qin;Xinpeng Zhang;Guorui Feng
{"title":"用于快速多视角聚类的双共识锚点学习","authors":"Yalan Qin;Chuan Qin;Xinpeng Zhang;Guorui Feng","doi":"10.1109/TIP.2024.3459651","DOIUrl":null,"url":null,"abstract":"Multi-view clustering usually attempts to improve the final performance by integrating graph structure information from different views and methods based on anchor are presented to reduce the computation cost for datasets with large scales. Despite significant progress, these methods pay few attentions to ensuring that the cluster structure correspondence between anchor graph and partition is built on multi-view datasets. Besides, they ignore to discover the anchor graph depicting the shared cluster assignment across views under the orthogonal constraint on actual bases in factorization. In this paper, we propose a novel Dual consensus Anchor Learning for Fast multi-view clustering (DALF) method, where the cluster structure correspondence between anchor graph and partition is guaranteed on multi-view datasets with large scales. It jointly learns anchors, constructs anchor graph and performs partition under a unified framework with the rank constraint imposed on the built Laplacian graph and the orthogonal constraint on the centroid representation. DALF simultaneously focuses on the cluster structure in the anchor graph and partition. The final cluster structure is simultaneously shown in the anchor graph and partition. We introduce the orthogonal constraint on the centroid representation in anchor graph factorization and the cluster assignment is directly constructed, where the cluster structure is shown in the partition. We present an iterative algorithm for solving the formulated problem. Extensive experiments demonstrate the effectiveness and efficiency of DALF on different multi-view datasets compared with other methods.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"33 ","pages":"5298-5311"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Consensus Anchor Learning for Fast Multi-View Clustering\",\"authors\":\"Yalan Qin;Chuan Qin;Xinpeng Zhang;Guorui Feng\",\"doi\":\"10.1109/TIP.2024.3459651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-view clustering usually attempts to improve the final performance by integrating graph structure information from different views and methods based on anchor are presented to reduce the computation cost for datasets with large scales. Despite significant progress, these methods pay few attentions to ensuring that the cluster structure correspondence between anchor graph and partition is built on multi-view datasets. Besides, they ignore to discover the anchor graph depicting the shared cluster assignment across views under the orthogonal constraint on actual bases in factorization. In this paper, we propose a novel Dual consensus Anchor Learning for Fast multi-view clustering (DALF) method, where the cluster structure correspondence between anchor graph and partition is guaranteed on multi-view datasets with large scales. It jointly learns anchors, constructs anchor graph and performs partition under a unified framework with the rank constraint imposed on the built Laplacian graph and the orthogonal constraint on the centroid representation. DALF simultaneously focuses on the cluster structure in the anchor graph and partition. The final cluster structure is simultaneously shown in the anchor graph and partition. We introduce the orthogonal constraint on the centroid representation in anchor graph factorization and the cluster assignment is directly constructed, where the cluster structure is shown in the partition. We present an iterative algorithm for solving the formulated problem. Extensive experiments demonstrate the effectiveness and efficiency of DALF on different multi-view datasets compared with other methods.\",\"PeriodicalId\":94032,\"journal\":{\"name\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"volume\":\"33 \",\"pages\":\"5298-5311\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10684088/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10684088/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多视图聚类通常试图通过整合来自不同视图的图结构信息来提高最终性能,并提出了基于锚的方法来降低大规模数据集的计算成本。尽管取得了重大进展,但这些方法很少关注如何确保在多视图数据集上建立锚图与分区之间的聚类结构对应关系。此外,这些方法忽视了在因式分解的实际基数正交约束下发现描述跨视图共享聚类分配的锚图。在本文中,我们提出了一种新颖的用于快速多视图聚类的双共识锚点学习(Dual consensus Anchor Learning for Fast multi-view clustering,DALF)方法,在这种方法中,锚点图和分区之间的聚类结构对应关系在大尺度多视图数据集上得到了保证。它在统一的框架下联合学习锚点、构建锚点图并执行分区,对构建的拉普拉斯图施加秩约束,对中心点表示施加正交约束。DALF 同时关注锚图和分区中的聚类结构。最终的聚类结构同时显示在锚图和分区中。我们在锚图因式分解中引入了对中心点表示的正交约束,并直接构建了聚类分配,聚类结构显示在分区中。我们提出了解决所提问题的迭代算法。大量实验证明,与其他方法相比,DALF 在不同多视图数据集上的有效性和高效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual Consensus Anchor Learning for Fast Multi-View Clustering
Multi-view clustering usually attempts to improve the final performance by integrating graph structure information from different views and methods based on anchor are presented to reduce the computation cost for datasets with large scales. Despite significant progress, these methods pay few attentions to ensuring that the cluster structure correspondence between anchor graph and partition is built on multi-view datasets. Besides, they ignore to discover the anchor graph depicting the shared cluster assignment across views under the orthogonal constraint on actual bases in factorization. In this paper, we propose a novel Dual consensus Anchor Learning for Fast multi-view clustering (DALF) method, where the cluster structure correspondence between anchor graph and partition is guaranteed on multi-view datasets with large scales. It jointly learns anchors, constructs anchor graph and performs partition under a unified framework with the rank constraint imposed on the built Laplacian graph and the orthogonal constraint on the centroid representation. DALF simultaneously focuses on the cluster structure in the anchor graph and partition. The final cluster structure is simultaneously shown in the anchor graph and partition. We introduce the orthogonal constraint on the centroid representation in anchor graph factorization and the cluster assignment is directly constructed, where the cluster structure is shown in the partition. We present an iterative algorithm for solving the formulated problem. Extensive experiments demonstrate the effectiveness and efficiency of DALF on different multi-view datasets compared with other methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Cross-Attention Point Transformer With Global Porous Sampling Salient Object Detection From Arbitrary Modalities GSSF: Generalized Structural Sparse Function for Deep Cross-Modal Metric Learning AnlightenDiff: Anchoring Diffusion Probabilistic Model on Low Light Image Enhancement Exploring Multi-Modal Contextual Knowledge for Open-Vocabulary Object Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1