LeTac-MPC:触觉反应抓取的学习模型预测控制

IF 9.4 1区 计算机科学 Q1 ROBOTICS IEEE Transactions on Robotics Pub Date : 2024-09-18 DOI:10.1109/TRO.2024.3463470
Zhengtong Xu;Yu She
{"title":"LeTac-MPC:触觉反应抓取的学习模型预测控制","authors":"Zhengtong Xu;Yu She","doi":"10.1109/TRO.2024.3463470","DOIUrl":null,"url":null,"abstract":"Grasping is a crucial task in robotics, necessitating tactile feedback and reactive grasping adjustments for robust grasping of objects under various conditions and with differing physical properties. In this article, we introduce LeTac-MPC, a learning-based model predictive control (MPC) for tactile-reactive grasping. Our approach enables the gripper to grasp objects with different physical properties on dynamic and force-interactive tasks. We utilize a vision-based tactile sensor, GelSight (Yuan et al. 2017), which is capable of perceiving high-resolution tactile feedback that contains information on the physical properties and states of the grasped object. LeTac-MPC incorporates a differentiable MPC layer designed to model the embeddings extracted by a neural network from tactile feedback. This design facilitates convergent and robust grasping control at a frequency of 25 Hz. We propose a fully automated data collection pipeline and collect a dataset only using standardized blocks with different physical properties. However, our trained controller can generalize to daily objects with different sizes, shapes, materials, and textures. The experimental results demonstrate the effectiveness and robustness of the proposed approach. We compare LeTac-MPC with two purely model-based tactile-reactive controllers (MPC and PD) and open-loop grasping. Our results show that LeTac-MPC has optimal performance in dynamic and force-interactive tasks and optimal generalizability.","PeriodicalId":50388,"journal":{"name":"IEEE Transactions on Robotics","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LeTac-MPC: Learning Model Predictive Control for Tactile-Reactive Grasping\",\"authors\":\"Zhengtong Xu;Yu She\",\"doi\":\"10.1109/TRO.2024.3463470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grasping is a crucial task in robotics, necessitating tactile feedback and reactive grasping adjustments for robust grasping of objects under various conditions and with differing physical properties. In this article, we introduce LeTac-MPC, a learning-based model predictive control (MPC) for tactile-reactive grasping. Our approach enables the gripper to grasp objects with different physical properties on dynamic and force-interactive tasks. We utilize a vision-based tactile sensor, GelSight (Yuan et al. 2017), which is capable of perceiving high-resolution tactile feedback that contains information on the physical properties and states of the grasped object. LeTac-MPC incorporates a differentiable MPC layer designed to model the embeddings extracted by a neural network from tactile feedback. This design facilitates convergent and robust grasping control at a frequency of 25 Hz. We propose a fully automated data collection pipeline and collect a dataset only using standardized blocks with different physical properties. However, our trained controller can generalize to daily objects with different sizes, shapes, materials, and textures. The experimental results demonstrate the effectiveness and robustness of the proposed approach. We compare LeTac-MPC with two purely model-based tactile-reactive controllers (MPC and PD) and open-loop grasping. Our results show that LeTac-MPC has optimal performance in dynamic and force-interactive tasks and optimal generalizability.\",\"PeriodicalId\":50388,\"journal\":{\"name\":\"IEEE Transactions on Robotics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10684081/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Robotics","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10684081/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

摘要

抓取是机器人技术中的一项重要任务,需要触觉反馈和反应式抓取调整,才能在各种条件下稳健地抓取具有不同物理特性的物体。在本文中,我们介绍了基于学习的触觉反应抓取模型预测控制(MPC)--LeTac-MPC。我们的方法使抓手能够在动态和力交互任务中抓取具有不同物理特性的物体。我们利用基于视觉的触觉传感器 GelSight(Yuan 等人,2017 年),它能够感知高分辨率的触觉反馈,其中包含被抓取物体的物理特性和状态信息。LeTac-MPC 包含一个可微分的 MPC 层,旨在对神经网络从触觉反馈中提取的嵌入进行建模。这种设计有助于在 25 Hz 频率下实现收敛且稳健的抓取控制。我们提出了一个全自动数据收集管道,并只使用具有不同物理特性的标准化块来收集数据集。不过,我们训练有素的控制器可以通用于不同尺寸、形状、材料和质地的日常物品。实验结果证明了所提方法的有效性和鲁棒性。我们将 LeTac-MPC 与两个纯粹基于模型的触觉反应控制器(MPC 和 PD)以及开环抓取进行了比较。结果表明,LeTac-MPC 在动态和力交互任务中具有最佳性能和最佳通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LeTac-MPC: Learning Model Predictive Control for Tactile-Reactive Grasping
Grasping is a crucial task in robotics, necessitating tactile feedback and reactive grasping adjustments for robust grasping of objects under various conditions and with differing physical properties. In this article, we introduce LeTac-MPC, a learning-based model predictive control (MPC) for tactile-reactive grasping. Our approach enables the gripper to grasp objects with different physical properties on dynamic and force-interactive tasks. We utilize a vision-based tactile sensor, GelSight (Yuan et al. 2017), which is capable of perceiving high-resolution tactile feedback that contains information on the physical properties and states of the grasped object. LeTac-MPC incorporates a differentiable MPC layer designed to model the embeddings extracted by a neural network from tactile feedback. This design facilitates convergent and robust grasping control at a frequency of 25 Hz. We propose a fully automated data collection pipeline and collect a dataset only using standardized blocks with different physical properties. However, our trained controller can generalize to daily objects with different sizes, shapes, materials, and textures. The experimental results demonstrate the effectiveness and robustness of the proposed approach. We compare LeTac-MPC with two purely model-based tactile-reactive controllers (MPC and PD) and open-loop grasping. Our results show that LeTac-MPC has optimal performance in dynamic and force-interactive tasks and optimal generalizability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Robotics
IEEE Transactions on Robotics 工程技术-机器人学
CiteScore
14.90
自引率
5.10%
发文量
259
审稿时长
6.0 months
期刊介绍: The IEEE Transactions on Robotics (T-RO) is dedicated to publishing fundamental papers covering all facets of robotics, drawing on interdisciplinary approaches from computer science, control systems, electrical engineering, mathematics, mechanical engineering, and beyond. From industrial applications to service and personal assistants, surgical operations to space, underwater, and remote exploration, robots and intelligent machines play pivotal roles across various domains, including entertainment, safety, search and rescue, military applications, agriculture, and intelligent vehicles. Special emphasis is placed on intelligent machines and systems designed for unstructured environments, where a significant portion of the environment remains unknown and beyond direct sensing or control.
期刊最新文献
A Coordinated Approach to Control Mechanical and Computing Resources in Mobile Robots Design, Characterization, and Validation of a Variable Stiffness Prosthetic Elbow Using Fiber Optic Bundles to Miniaturize Vision-Based Tactile Sensors Compact Modular Robotic Wrist with Variable Stiffness Capability A Lower Limb Wearable Exosuit for Improved Sitting, Standing, and Walking Efficiency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1